AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Determination of quantitative structure-property and structure-process relationships for graphene production in water

Thomas J. NackenCornelia DammHaichen XingAndreas RügerWolfgang Peukert( )
Institute of Particle Technology (LFG)Friedrich-Alexander University Erlangen-Nürnberg (FAU)Cauerstrasse 491058Erlangen, Germany
Show Author Information

Graphical Abstract

Abstract

A scalable method for graphene and few-layer graphene (FLG) production by graphite delamination in aqueous solutions of the nonionic surfactant TWEEN®80 (TW80) using stirred-media mills is presented. Delaminated product analysis using statistical Raman spectroscopy yielded extensive processing-structure-property relationships that revealed how stress intensity and specific energy input, i.e., the process parameters, govern the yield of graphene production and defect formation. The dispersed carbon concentration increased but the content and the quality of the FLG product decreased sharply with higher specific energy input. The FLG content of the product was up to 90%, especially for low specific energy input. Moreover, Raman analyses revealed that stress intensities greater than about 1 nJ were related to significant defect formation in the product particles. Another key parameter for graphene production is solvent viscosity. The FLG concentration in the product increased by a factor of 10 when the solvent's viscosity was increased from 1 to 6 mPa·s because shear- and friction-induced delamination was enhanced and in-plane fracture was reduced due to dampening of bead motion. Based on the processing-structure-property relationships found, we propose that the delamination process can be designed in such way that the product consists, almost totally, of FLG and that single-layer graphene is produced. The scalability of graphene production by stirred-media delamination was demonstrated when an increase in the batch size from 0.2 to 2 L had no significant effect on product quality.

Electronic Supplementary Material

Download File(s)
12274_2014_694_MOESM1_ESM.pdf (2.1 MB)

References

1

Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 1, 016602.

2

Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 9-10, 351-355.

3

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films, Science 2004, 306, 666-669.

4

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10451-10453.

5

Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308.

6

Wang, X.; Zhi, L. J.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323-327.

7

Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W.; et al. Graphene-based liquid crystal device. Nano Lett. 2008, 8, 1704-1708.

8

Ko, G.; Kim, H. -Y.; Ahn, J.; Park, Y. -M.; Lee, K. -Y.; Kim, J. Graphene-based nitrogen dioxide gas sensors. Curr. Appl. Phys. 2010, 10, 1002-1004.

9

Lee, C. G.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.

10

Van Bommel, A. J.; Crombeen, J. E.; Van Tooren, A. LEED and Auger electron observations of the SiC(0001) surface. Surf. Sci. 1975, 48, 463-472.

11

Charrier, A.; Coati, A.; Argunova, T.; Thibaudau, F.; Garreau, Y.; Pinchaux, R.; Forbeaux, I.; Debever, J. -M.; Sauvage-Simkin, M.; Themlin, J. -M. Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films. J. Appl. Phys. 2002, 92, 2479-2484.

12

Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; et al. Ultrathin epitaxial graphite: 2D Electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912-19916.

13

Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191-1196.

14

Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Röhrl, J.; et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203-207.

15

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30-35.

16

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.

17

Wei, D. C.; Wu, B.; Guo, Y. L.; Yu, G., Liu, Y. Q. Controllable chemical vapor deposition growth of few layer graphene for electronic devices. Acc. Chem. Res. 2013, 46, 106-115.

18

Gupta, P.; Dongare, P. D.; Grover, S.; Dubey, S.; Mamgain, H.; Bhattacharya, A., Deshmukh, M. M. A facile process for soak-and-peel delamination of CVD graphene from substrates using water. Sci. Rep. 2014, 4, 3882.

19

Lee, J. -H.; Lee, E. K.; Joo, W. -J.; Jang, Y.; Kim, B. -S.; Lim, J. Y.; Choi, S. -H.; Ahn, S. J.; Ahn, J. R.; Park, M. -H.; et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 2014, 344, 286-289.

20

Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc 1958, 80, 1339-1339.

21

Walter, J.; Nacken, T. J.; Damm, C.; Thajudeen, T.; Eigler, S.; Peukert, W. Determination of the lateral dimension of graphene oxide nanosheets using analytical ultracentrifugation. Small 2015, 11, 814-825.

22

Niyogi, S.; Bekyarova, E.; Itkis, M. E.; McWilliams, J. L.; Hamon, M. A.; Haddon, R. C. Solution properties of graphite and graphene. J. Am. Chem. Soc 2006, 128, 7720-7721.

23

Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558-1565.

24

Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101-105.

25

Wang, G. X.; Wang, B.; Park, J.; Yang, J.; Shen, X. P.; Yao, J. Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method. Carbon 2009, 47, 68-72.

26

Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 2009, 4, 25-29.

27

Choucair, M.; Thordarson, P.; Stride, J. A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 2009, 4, 30-33.

29

Lu, W. B.; Liu, S.; Qin, X. Y.; Wang, L.; Tian, J. Q.; Luo, Y. L.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. High-yield, large-scale production of few-layer graphene flakes within seconds: Using chlorosulfonic acid and H2O2 as exfoliating agents. J. Mater. Chem. 2012, 22, 8775-8777.

30

Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906-3924.

31

Eigler, S.; Dotzer, C.; Hirsch, A. Visualization of defect densities in reduced graphene oxide. Carbon 2012, 50, 3666-3673.

32

Eigler, S.; Grimm, S.; Enzelberger-Heim, M.; Müller, P.; Hirsch, A. Graphene oxide: Efficiency of reducing agents. Chem. Commun. 2013, 49, 7391-7393.

33

Eigler, S.; Enzelberger-Heim, M.; Grimm, S.; Hofmann, P.; Kroener, W.; Geworski, A.; Dotzer, C.; Röckert, M.; Xiao, J.; Papp, C.; et al. Wet chemical synthesis of graphene. Adv. Mater. 2013, 25, 3583-3587.

34

Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856-5857.

35

Barwich, S.; Khan, U.; Coleman, J. N. A technique to pretreat graphite which allows the rapid dispersion of defect-free graphene in solvents at high concentration. J. Phys. Chem. C 2013, 117, 19212-19218.

36

Guardia, L.; Fernández-Merino, M. J.; Paredes, J. I.; Solís-Fernández, P.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D. High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 2011, 49, 1653-1662.

37

Hernandez, Y.; Lotya, M.; Rickard, D.; Bergin, S. D.; Coleman, J. N. Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 2009, 26, 3208-3213.

38

Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K.; et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563-568.

39

Khan, U.; O'Neill, A.; Porwal, H.; May, P.; Nawaz, K.; Coleman, J. N. Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation. Carbon 2012, 50, 470-475.

40

Khan, U.; O'Neill, A.; Lotya, M.; De, S.; Coleman, J. N. High-concentration solvent exfoliation of graphene. Small 2010, 7, 864-871.

41

Khan, U.; Porwal, H.; O'Neill, A.; Nawaz, K.; May, P.; Coleman, J. N. Solvent-exfoliated graphene at extremely high concentration. Langmuir 2011, 28, 9077-9082.

42

Lotya, M.; King, P. J.; Khan, U.; De, S.; Coleman, J. N. High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 2010, 6, 3155-3162.

43

Yi, M.; Shen, Z. G.; Zhang, X. J.; Ma, S. L. Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters. J. Phys. D: Appl. Phys. 2013, 2, 025301.

44

O'Neill, A.; Khan, U.; Nirmalraj, P. N.; Boland, J.; Coleman, J. N.; et al. Graphene dispersion and exfoliation in low boiling point solvents. J. Phys. Chem. C 2011, 13, 5422-5428.

45

Sun, Z. Y.; Pöller, S.; Huang, X.; Guschin, D.; Taetz, C.; Ebbinghaus, P.; Masa, J.; Erbe, A.; Kilzer, A.; Schuhmann, W.; et al. High-yield exfoliation of graphite in acrylate polymers: A stable few-layer graphene nanofluid with enhanced thermal conductivity. Carbon 2013, 64, 288-294.

46

Yang, H.; Hernandez, Y.; Schlierf, A.; Felten, A.; Eckmann, A.; Johal, S.; Louette, P.; Pireaux, J. -J.; Feng, X.; Mullen, K.; et al. A simple method for graphene production based on exfoliation of graphite in water using 1-pyrenesulfonic acid sodium salt. Carbon 2013, 53, 357-365.

47

Konnerth, C.; Damm, C.; Schmidt, J.; Peukert, W. Mechanical activation of trans-stilbene during wet grinding. Adv. Powder Technol. 2014, 25, 1808-1816.

48

Romeis, S.; Hoppe, A.; Eisermann, C.; Schneider, N.; Boccaccini, A. R.; Schmidt, J.; Peukert, W. Enhancing in vitro bioactivity of melt-derived 45S5 bioglass® by comminution in a stirred media mill. J. Am. Ceram. Soc. 2014, 97, 150-156.

49

Schmidt, J.; Plata, M.; Tröger, S.; Peukert, W. Production of polymer particles below 5 μm by wet grinding. Powder Technol. 2012, 228, 84-90.

50

Knieke, C.; Sommer, M.; Peukert, W. Identifying the apparent and true grinding limit. Powder Technol. 2009, 195, 25-30.

51

Knieke, C.; Steinborn, C.; Romeis, S.; Peukert, W.; Breitung- Faes, S.; Kwade, A. Nanoparticle production with stirred-media mills: Opportunities and limits. Chem. Eng. Technol. 2010, 33, 1401-1411.

52

Knieke, C.; Berger, A.; Voigt, M.; Taylor, R. N. K.; Röhrl, J.; Peukert, W. Scalable production of graphene sheets by mechanical delamination. Carbon 2010, 48, 3196-3204.

53

Peukert, W.; Schwarzer, H. -C.; Stenger, F. Control of aggregation in production and handling of nanoparticles. Chem. Eng. Process. 2005, 44, 245-252.

54

Yao, Y. G.; Lin, Z. Y.; Li, Z.; Song, X. J.; Moon, K. -S.; Wong, C. -P. Large-scale production of two-dimensional nanosheets. J. Mater. Chem. 2012, 22, 13494-13499.

55

Zhao, W. F.; Fang, M.; Wu, F. R.; Wu, H.; Wang, L. W.; Chen, G. H. Preparation of graphene by exfoliation of graphite using wet ball milling. J. Mater. Chem. 2010, 20, 5817-5819.

56

Zhao, W. F.; Wu, F. R.; Wu, H.; Chen, G. H. Preparation of colloidal dispersions of graphene sheets in organic solvents by using ball milling. J. Nanomater. 2010, 2010, 528235.

57

Lv, Y. Y.; Yu, L. S.; Jiang, C. M.; Chen, S. M.; Nie, Z. X. Synthesis of graphene nanosheet powder with layer number control via a soluble salt-assisted route. RSC Adv. 2014, 4, 13350-13354.

58

Posudievsky, O. Yu.; Khazieieva, O. A.; Cherepanov, V. V.; Koshechko, V. G.; Pokhodenko, V. D. High yield of graphene by dispersant-free liquid exfoliation of mechanochemically delaminated graphite. J. Nanopart. Res. 2013, 15, 2046.

59

Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O'Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P.; et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624-630.

60

Damm, C.; Körner, J.; Peukert, W. Delamination of hexagonal boron nitride in a stirred media mill. J. Nanopart. Res. 2013, 15, 1561.

61

Damm, C.; Nacken, T. J.; Peukert, W. Quantitative evaluation of delamination of graphite by wet media milling. Carbon 2014, 81, 284-294.

62

Eigler, S.; Hof, F.; Enzelberger-Heim, M.; Grimm, S.; Müller, P.; Hirsch, A. Statistical Raman microscopy and atomic force microscopy on heterogeneous graphene obtained after reduction of graphene oxide. J. Phys. Chem. C 2014, 118, 7698-7704.

63

Englert, J. M.; Vecera, P.; Knirsch, K. C.; Schäfer, R. A.; Hauke, F.; Hirsch, A. Scanning-Raman-microscopy for the statistical analysis of covalently functionalized graphene. ACS Nano 2013, 7, 5472-5482.

64

Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z. M.; McGovern, I. T.; et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611-3620.

65

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

66

Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51-87.

67

Tuinstra, F.; Koenig, J. L. Characterization of graphite fiber surfaces with Raman spectroscopy. J. Compos. Mater. 1970, 4, 492-499.

68

Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190-3196.

69

Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C. Raman spectroscopy of graphene edges. Nano Lett. 2009, 9, 1433-1441.

70

Gupta, A. K.; Russin, T. J.; Gutiérrez, H. R.; Eklund, P. C. Probing graphene edges via Raman scattering. ACS Nano 2009, 3, 45-52.

71

Englert, J. M.; Röhrl, J.; Schmidt, C. D.; Graupner, R.; Hundhausen, M.; Hauke, F.; Hirsch, A. Soluble graphene: Generation of aqueous graphene solutions aided by a perylenebisimide-based bolaamphiphile. Adv. Mater. 2009, 21, 4265-4269.

72

Hao, Y. F.; Wang, Y. Y.; Wang, L.; Ni, Z. H.; Wang, Z. Q.; Wang, R.; Koo, C. K.; Shen, Z. X.; Thong, J. T. L. Probing layer number and stacking order of few-layer graphene by Raman spectroscopy. Small 2010, 6, 195-200.

73

Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 2007, 7, 238-242.

74

Lee, D. S.; Riedl, C.; Krauss, B.; Klitzing, K. von; Starke, U.; Smet, J. H. Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2. Nano Lett. 2008, 8, 4320-4325.

75

Lui, C. H.; Li, Z. Q.; Chen, Z. Y.; Klimov, P. V.; Brus, L. E.; Heinz, T. F. Imaging stacking order in few-layer graphene. Nano Lett. 2011, 11, 164-169.

76

Kwade, A. Wet comminution in stirred media mills—Research and its practical application. Powder Technol. 1999, 105, 14-20.

77

Davis, R. H.; Serayssol, J. -M.; Hinch, E. J. The elastohydrodynamic collision of two spheres. J. Fluid Mech. 1986, 163, 479-497.

78

Lee, H.; Lee, N.; Seo, Y.; Eom, J.; Lee, S. Comparison of frictional forces on graphene and graphite. Nanotechnology 2009, 20, 325701.

79

Lee, C.; Wei, X. D.; Li, Q. Y.; Carpick, R.; Kysar, J. W.; Hone, J. Elastic and frictional properties of graphene. Phys. Status Solidi B 2009, 246, 2562-2567.

80

Stadler, R.; Polke, R.; Schwedes, J.; Vock, F. Naßmahlung in Rührwerksmühlen. Chem. Ing. Tech. 1990, 62, 907-915.

81

Vozdecky, P.; Roosen, A.; Knieke, C.; Peukert, W. Direct tape casting of nanosized Al2O3 slurries derived from autogenous nanomilling. J. Am. Ceram. Soc. 2010, 93, 1313-1319.

Nano Research
Pages 1865-1881
Cite this article:
Nacken TJ, Damm C, Xing H, et al. Determination of quantitative structure-property and structure-process relationships for graphene production in water. Nano Research, 2015, 8(6): 1865-1881. https://doi.org/10.1007/s12274-014-0694-6

629

Views

16

Crossref

N/A

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 05 August 2014
Revised: 08 December 2014
Accepted: 14 December 2014
Published: 08 April 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return