Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Although polymer electrolyte membrane fuel cells (PEMFCs) have received broad attention due to their virtually zero emission, high power density, and high efficiency, at present the limited stability of the electrocatalysts used in PEMFCs is a critical limitation to their large-scale commercialization. As a type of popularly used electrocatalyst material, carbon black supported platinum (Pt/C)—although highly efficient—undergoes corrosion of carbon, Pt dissolution, Ostwald ripening, and aggregation of Pt nanoparticles (NPs) under harsh chemical and electrochemical oxidation conditions, which results in performance degradation of the electrocatalysts. In order to overcome these disadvantages, many groups have tried to improve the carbon support materials on which Pt is loaded. It has been found that some novel carbon nanomaterials and noncarbon materials with high surface areas, sufficient anchoring sites, high electrical conductivities, and high oxidation resistance under the strongly oxidizing condition in PEMFCs are ideal alternative supports. This review highlights the following aspects: (i) Recent advances in using novel carbon nanomaterials and noncarbon support materials to enhance the long-term durability of electrocatalysts; (ii) solutions to improve the electrical conductivity, surface area, and the strong interaction between metal and supports; and (iii) the synergistic effects in hybrid supports which help improve the stability of electrocatalysts.
Sharma, S.; Pollet, B. G. Support materials for PEMFC and DMFC electrocatalysts—A review. J. Power Sources 2012, 208, 96-119.
Zhao, Y.; Wang, Y.; Cheng, X.; Dong, L.; Zhang, Y.; Zang, J. Platinum nanoparticles supported on epitaxial TiC/ nanodiamond as an electrocatalyst with enhanced durability for fuel cells. Carbon 2014, 67, 409-416.
Sun, X.; Li, D.; Ding, Y.; Zhu, W.; Guo, S.; Wang, Z. L.; Sun, S. Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions. J. Am. Chem. Soc. 2014, 136, 5745-5749.
Su, L.; Jia, W. Z.; Li, C. M.; Lei, Y. Mechanisms for enhanced performance of platinum-based electrocatalysts in proton exchange membrane fuel cells. ChemSusChem 2014, 7, 361-378.
Marcu, A.; Toth, G.; Pietrasz, P.; Waldecker, J. Cathode catalysts degradation mechanism from liquid electrolyte to membrane electrode assembly. C. R. Chimie. 2014, 17, 752-759.
Takenaka, S.; Miyamoto, H.; Utsunomiya, Y.; Matsune, H.; Kishida, M. Catalytic activity of highly durable Pt/CNT catalysts covered with hydrophobic silica layers for the oxygen reduction reaction in PEFCs. J. Phys. Chem. C 2014, 118, 774-783.
Kuo, P. L.; Hsu, C. H.; Wu, H. M.; Hsu, W. S.; Kuo, D. Controllable-nitrogen doped carbon layer surrounding carbon nanotubes as novel carbon support for oxygen reduction reaction. Fuel Cells 2012, 12, 649-655.
Zhou, X.; Qiao, J.; Yang, L.; Zhang, J. A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions. Adv. Energy Mater. 2014, 4, 1301523.
Park, J. E.; Jang, Y. J.; Kim, Y. J.; Song, M. S.; Yoon, S.; Kim, D. H.; Kim, S. J. Sulfur-doped graphene as a potential alternative metal-free electrocatalyst and Pt-catalyst supporting material for oxygen reduction reaction. Phys. Chem. Chem. Phys. 2014, 16, 103-109.
Wang, S.; Zhang, L.; Xia, Z.; Roy, A.; Chang, D. W.; Baek, J. B.; Dai, L. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Edit. 2012, 51, 4209-4212.
Wang, X.; Chen, Z.; Wang, Y.; Wang, R. Rare-earth-doped Pt/Ba/Ce0.6Zr0.4O2-Al2O3 for NOx storage and reduction: The effect of rare-earth doping on efficiency and stability. ChemCatChem 2014, 6, 237-244.
Danilovic, N.; Subbaraman, R.; Chang, K. C.; Chang, S. H.; Kang, Y. J.; Snyder, J.; Paulikas, A. P.; Strmcnik, D.; Kim, Y. T.; Myers, D.; Stamenkovic, V. R.; Markovic, N. M. Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. J. Phys. Chem. Lett. 2014, 5, 2474-2478.
Tripković, V.; Abild-Pedersen, F.; Studt, F. Cerri, I.; Nagami, T.; Bligaard, T.; Rossmeisl, J. Metal oxide-supported platinum overlayers as proton-exchange membrane fuel cell cathodes. ChemCatChem 2012, 4, 228-235.
Pan, Z.; Xiao, Y.; Fu, Z.; Zhan, G.; Wu, S.; Xiao, C.; Hu, G.; Wei, Z. Hollow and porous titanium nitride nanotubes as high-performance catalyst supports for oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 13966-13975.
Yin, J.; Wang, L.; Tian, C.; Tan, T.; Mu, G.; Zhao, L.; Fu, H. Low-Pt loaded on a vanadium nitride/graphitic carbon composite as an efficient electrocatalyst for the oxygen reduction reaction. Chem. -Eur. J. 2013, 19, 13979-13986.
Liu, X.; Fu, G.; Chen, Y.; Tang, Y.; She, P.; Lu, T. Pt-Pd-Co trimetallic alloy network nanostructures with superior electrocatalytic activity towards the oxygen reduction reaction. Chem. -Eur. J. 2014, 20, 585-590.
Mathias, M. F.; Makharia, R.; Gasteiger, H. A.; Conley, J. J.; Fuller, T. J.; Gittleman, C. J.; Kocha, S. S.; Miller, D. P.; Mittelsteadt, C. K.; et al. Two fuel cell cars in every garage. Electrochem. Soc. Interface 2005, 3, 24-35.
Makharia, R.; Kocha, S.; Yu, P.; Sweikart, M. A.; Gu, W.; Wagner, F.; Gasteiger, H. A. Durable PEM fuel cell electrode materials: Requirements and benchmarking methodologies. ECS Trans. 2006, 1, 3-18.
Zhang, Y.; Chen, S.; Wang, Y.; Ding, W.; Wu, R.; Li, L.; Qi, X.; Wei, Z. Study of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress test. J. Power Sources 2015, 273, 62-69.
Chen, S.; Wei, Z.; Qi, X.; Dong, L.; Guo, Y. G.; Wan, L.; Shao, Z.; Li, L. Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity. J. Am. Chem. Soc. 2012, 134, 13252-13255.
Carpenter, M. K.; Moylan, T. E.; Kukreja, R. S.; Atwan, M. H.; Tessema, M. M. Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2012, 134, 8535-8542.
Wang, X.; Li, W.; Chen, Z.; Waje, M.; Yan, Y. Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J. Power Sources 2006, 158, 154-159.
Saleh, F. S.; Easton, E. B. Diagnosing degradation within PEM Fuel cell catalyst layers using electrochemical impedance spectroscopy. J. Electrochem. Soc. 2012, 159, B546-B553.
Dubau, L.; Castanheira, L.; Maillard, F.; Chatenet, M.; Lottin, O.; Maranzana, G.; Dillet, J.; Lamibrac, A.; Perrin, J. C.; Moukheiber, E.; et al. A review of PEM fuel cell durability: Materials degradation, local heterogeneities of aging and possible mitigation strategies. WIREs: Energy Environ. 2014, 3, 540-560.
Shrestha, S.; Liu, Y.; Mustain, W. E. Electrocatalytic activity and stability of Pt clusters on state-of-the-art supports: A review. Catal. Rev. 2011, 53, 256-336.
Li, L.; Chen, S. G.; Wei, Z. D.; Qi, X. Q.; Xia, M. R.; Wang, Y. Q. Experimental and DFT study of thiol-stabilized Pt/CNTs catalysts. Phys. Chem. Chem. Phys. 2012, 14, 16581-16587.
Shao, Y.; Yin, G.; Gao, Y.; Shi, P. Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions. J. Electrochem. Soc. 2006, 153, A1093-A1097.
Meier, J. C.; Galeano, C.; Katsounaros, I.; Topalov, A. A.; Kostka, A.; Schüth, F.; Mayrhofer, K. J. J. Degradation mechanisms of Pt/C fuel cell catalysts under simulated start-stop conditions. ACS Catal. 2012, 2, 832-843.
Yu, X. W.; Ye, S. Y. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst. J. Power Sources 2007, 172, 133-144.
Gilbert, J. A.; Kariuki, N. N.; Subbaraman, R.; Kropf, A. J.; Smith, M. C.; Holby, E. F.; Morgan, D.; Myers, D. J. In situ anomalous small-angle X-ray scattering studies of platinum nanoparticle fuel cell electrocatalyst degradation. J. Am. Chem. Soc. 2012, 134, 14823-14833.
Fayette, M.; Nutariya, J.; Vasiljevic, N.; Dimitrov, N. A study of Pt dissolution during formic acid oxidation. ACS Catal. 2013, 3, 1709-1718.
Topalov, A. A.; Katsounaros, I.; Auinger, M.; Cherevko, S.; Meier, J. C.; Klemm, S. O.; Mayrhofer, K. J. J. Dissolution of platinum: Limits for the deployment of electrochemical energy conversion? Angew. Chem. Int. Edit. 2012, 51, 12613-12615.
Umeda, M.; Kuwahara, Y.; Nakazawa, A.; Inoue, M. Pt degradation mechanism in concentrated sulfuric acid studied using rotating ring-disk electrode and electrochemical quartz crystal microbalance. J. Phys. Chem. C 2009, 113, 15707-15713.
Tang, L.; Han, B.; Persson, K.; Friesen, C.; He, T.; Sieradzki, K.; Ceder, G. Electrochemical stability of nanometer-scale Pt particles in acidic environments. J. Am. Chem. Soc. 2009, 132, 596-600.
Noël, J. M.; Yu, Y.; Mirkin, M. V. Dissolution of Pt at moderately negative potentials during oxygen reduction in water and organic media. Langmuir 2013, 29, 1346-1350.
Ishimoto, T.; Ogura, T.; Umeda, M.; Koyama, M. Theoretical study on dissolution and reprecipitation mechanism of Pt complex in Pt electrocatalyst. J. Phys. Chem. C 2011, 115, 3136-3142.
Merte, L. R.; Behafarid, F.; Miller, D. J.; Friebel, D.; Cho, S.; Mbuga, F.; Sokaras, D.; Alonso-Mori, R.; Weng, T. C.; Nordlund, D.; et al. Electrochemical oxidation of size-selected Pt nanoparticles studied using in situ high-energy-resolution X-ray absorption spectroscopy. ACS Catal. 2012, 2, 2371-2376.
Rinaldo, S. G.; Stumper, J. R.; Eikerling, M. Physical theory of platinum nanoparticle dissolution in polymer electrolyte fuel cells. J. Phys. Chem. C 2010, 114, 5773-5785.
Tang, L.; Li, X.; Cammarata, R. C.; Friesen, C.; Sieradzki, K. Electrochemical stability of elemental metal nanoparticles. J. Am. Chem. Soc. 2010, 132, 11722-11726.
Hansen, T. W.; DeLaRiva, A. T.; Challa, S. R.; Datye, A. K. Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening? Acc. Chem. Res. 2013, 46, 1720-1730.
Yoshida, K.; Bright, A.; Tanaka, N. Direct observation of the initial process of Ostwald ripening using spherical aberration-corrected transmission electron microscopy. J. Electron Microsc. 2012, 61, 99-103.
Hoogers, G. Fuel Cell Technology Handbook; CRC Press: New York, 2002.
Speder, J.; Zana, A.; Spanos, I.; Kirkensgaard, J. J. K.; Mortensen, K.; Hanzlik, M.; Arenz, M. Comparative degradation study of carbon supported proton exchange membrane fuel cell electrocatalysts—The influence of the platinum to carbon ratio on the degradation rate. J. Power Sources 2014, 261, 14-22.
Wang, J.; Yin, G.; Shao, Y.; Zhang, S.; Wang, Z.; Gao, Y. Effect of carbon black support corrosion on the durability of Pt/C catalyst. J. Power Sources 2007, 171, 331-339.
Li, L.; Xue, Y.; Xia, M. R.; Chen, S. G.; Wei, Z. D. Density functional theory study of electronic structure and catalytic activity for Pt/C catalyst covered by polyaniline. Scientia Sinica Chimica 2013, 43, 1566-1577.
Higgins, D. C.; Meza, D.; Chen, Z. Nitrogen-doped carbon nanotubes as platinum catalyst supports for oxygen reduction reaction in proton exchange membrane fuel cells. J. Phys. Chem. C 2010, 114, 21982-21988.
Takenaka, S.; Matsumori, H.; Nakagawa, K.; Matsune, H.; Tanabe, E.; Kishida, M. Improvement in the durability of Pt electrocatalysts by coverage with silica layers. J. Phys. Chem. C 2007, 111, 15133-15136.
Du, C.; Chen, M.; Cao, X.; Yin, G.; Shi, P. A novel CNT@SnO2 core-sheath nanocomposite as a stabilizing support for catalysts of proton exchange membrane fuel cells. Electrochem. Commun. 2009, 11, 496-498.
Masa, J.; Bordoloi, A.; Muhler, M.; Schuhmann, W.; Xia, W. Enhanced electrocatalytic stability of platinum nanoparticles supported on a nitrogen-doped composite of carbon nanotubes and mesoporous titania under oxygen reduction conditions. ChemSusChem 2012, 5, 523-525.
Xia, B. Y.; Ding, S.; Wu, H. B.; Wang, X.; Wen, X. Hierarchically structured Pt/CNT@TiO2 nanocatalysts with ultrahigh stability for low-temperature fuel cells. Rsc. Adv. 2012, 2, 792-796.
Wang, H.; Zheng, J.; Peng, F.; Yu, H. Pt/IrO2/CNT anode catalyst with high performance for direct methanol fuel cells. Catal. Commun. 2013, 33, 34-37.
Chen, S.; Wei, Z.; Guo, L.; Ding, W.; Dong, L.; Shen, P.; Qi, X.; Li, L. Enhanced dispersion and durability of Pt nanoparticles on a thiolated CNT support. Chem. Commun. 2011, 47, 10984-10986.
Kim, Y. T.; Mitani, T. Surface thiolation of carbon nanotubes as supports: A promising route for the high dispersion of Pt nanoparticles for electrocatalysts. J. Catal. 2006, 238, 394-401.
Park, S. A.; Kim, D. S.; Kim, T. J.; Kim, Y. T. Strong interaction between Pt and thiolated carbon for electrocatalytic durability enhancement. ACS Catal. 2013, 3, 3067-3074.
Hsu, C. H.; Liao, H. Y.; Kuo, P. L. Aniline as a dispersant and stabilizer for the preparation of Pt nanoparticles deposited on carbon nanotubes. J. Phys. Chem. C 2010, 114, 7933-7939.
Wang, S.; Yu, D.; Dai, L. Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 2011, 133, 5182-5185.
He, D.; Zeng, C.; Xu, C.; Cheng, N.; Li, H.; Mu, S.; Pan, M. Polyaniline-functionalized carbon nanotube supported platinum catalysts. Langmuir 2011, 27, 5582-5588.
Guo, S.; Dong, S.; Wang, E. Constructing carbon nanotube/Pt nanoparticle hybrids using an imidazolium-salt-based ionic liquid as a linker. Adv. Mater. 2010, 22, 1269-1272.
Fujigaya, T.; Nakashima, N. Fuel cell electrocatalyst using polybenzimidazole-modified carbon nanotubes as support materials. Adv. Mater. 2013, 25, 1666-1681.
Guo, S.; Sun, S. FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 2492-2495.
Groves, M. N.; Malardier-Jugroot, C.; Jugroot, M. Improving platinum catalyst durability with a doped graphene support. J. Phys. Chem. C 2012, 116, 10548-10556.
Choi, C. H.; Park, S. H.; Woo, S. I. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano 2012, 6, 7084-7091.
Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Edit. 2012, 51, 11496-11500.
Wang, H.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781-794.
Ding, W.; Wei, Z.; Chen, S.; Qi, X.; Yang, T.; Hu, J.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Space-confinement-induced synthesis of pyridinic-and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. Angew. Chem. Int. Edit. 2013, 52, 11755-11759.
Liu, S. H.; Wu, M. T.; Lai, Y. H.; Chiang, C. C.; Yu, N.; Liu, S. B. Fabrication and electrocatalytic performance of highly stable and active platinum nanoparticles supported on nitrogen-doped ordered mesoporous carbons for oxygen reduction reaction. J. Mater. Chem. 2011, 21, 12489-12496.
Wu, G.; Li, D.; Dai, C.; Wang, D.; Li, N. Well-dispersed high-loading Pt nanoparticles supported by shell-core nanostructured carbon for methanol electrooxidation. Langmuir 2008, 24, 3566-3575.
He, D.; Jiang, Y.; Lv, H.; Pan, M.; Mu, S. Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability. Appl. Catal. B: Environ. 2013, 379-388.
Muhich, C. L.; Westcott, J. Y.; Morris, T. C.; Weimer, A. W.; Musgrave, C. B. The effect of N and B doping on graphene and the adsorption and migration behavior of Pt atoms. J. Phys. Chem. C 2013, 117, 10523-10535.
Vinayan, B. P.; Nagar, R.; Rajalakshmi, N.; Ramaprabhu, S. Novel platinum-cobalt alloy nanoparticles dispersed on nitrogen-doped graphene as a cathode electrocatalyst for PEMFC applications. Adv. Funct. Mater. 2012, 22, 3519-3526.
Li, Y. H.; Hung, T. H.; Chen, C. W. A first-principles study of nitrogen-and boron-assisted platinum adsorption on carbon nanotubes. Carbon 2009, 47, 850-855.
Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X. A.; Huang, S. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 2011, 6, 205-211.
Higgins, D.; Hoque, M. A.; Seo, M. H.; Wang, R.; Hassan, F.; Choi, J. Y.; Pritzker, M.; Yu, A.; Zhang, J.; Chen, Z. Development and simulation of sulfur-doped graphene supported platinum with exemplary stability and activity towards oxygen reduction. Adv. Funct. Mater. 2014, 24, 4325-4336.
Galeano, C.; Meier, J. C.; Peinecke, V.; Bongard, H.; Katsounaros, I.; Topalov, A. A.; Lu, A.; Mayrhofer, K. J. J.; Schüth, F. Toward highly stable electrocatalysts via nanoparticle pore confinement. J. Am. Chem. Soc. 2012, 134, 20457-20465.
Wang, X. X.; Tan, Z. H.; Zeng, M.; Wang, J. N. Carbon nanocages: A new support material for Pt catalyst with remarkably high durability. Sci. Rep. 2014, 4, 4437.
Zhang, C. W.; Xu, L. B.; Shan, N. N.; Sun, T. T.; Chen, J. F.; Yan, Y. S. Enhanced electrocatalytic activity and durability of Pt particles supported on ordered mesoporous carbon spheres. ACS Catal. 2014, 4, 1926-1930.
Santiago, D.; Rodríguez-Calero, G. G.; Palkar, A.; Barraza-Jimenez, D.; Galvan, D. H.; Casillas, G.; Mayoral, A.; Jose-Yacamán, M.; Echegoyen, L.; Cabrera, C. R. Platinum electrodeposition on unsupported carbon nano-onions. Langmuir 2012, 28, 17202-17210.
Ho, V. T. T.; Pan, C. J.; Rick, J.; Su, W. N.; Hwang, B. J. Nanostructured Ti0.7Mo0.3O2 support enhances electron transfer to Pt: High-performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2011, 133, 11716-11724.
Kumar, A.; Ramani, V. Strong metal-support interactions enhance the activity and durability of platinum supported on tantalum-modified titanium dioxide electrocatalysts. ACS Catal. 2014, 4, 1516-1525.
Xia, M.; Ding, W.; Xiong, K.; Li, L.; Qi, X.; Chen, S.; Hu, B.; Wei, Z. Anchoring effect of exfoliated-montmorillonite-supported Pd catalyst for the oxygen reduction reaction. J. Phys. Chem. C 2013, 117, 10581-10588.
Ding, W.; Xia, M. R.; Wei, Z. D.; Chen, S. G.; Hu, J. S.; Wan, L. J.; Qi, X. Q.; Hu, X. H.; Li, L. Enhanced stability and activity with Pd-O junction formation and electronic structure modification of palladium nanoparticles supported on exfoliated montmorillonite for the oxygen reduction reaction. Chem. Commun. 2014, 50, 6660-6663.
Yang, M.; Cui, Z.; DiSalvo, F. J. Mesoporous titanium nitride supported Pt nanoparticles as high performance catalysts for methanol electrooxidation. Phys. Chem. Chem. Phys. 2013, 15, 1088-1092.
Roca-Ayats, M.; García, G.; Galante, J. L.; Peña, M. A.; Martínez-Huerta, M. V. Electrocatalytic stability of Ti based-supported Pt3Ir nanoparticles for unitized regenerative fuel cells. Int. J. Hydrogen Energy 2014, 39, 5477-5484.
Qiu, Z.; Huang, H.; Du, J.; Tao, X.; Xia, Y.; Feng, T.; Gan, Y.; Zhang, W. Biotemplated synthesis of bark-structured TiC nanowires as Pt catalyst supports with enhanced electrocatalytic activity and durability for methanol oxidation. J. Mater. Chem. A 2014, 2, 8003-8008.
Kimmel, Y. C.; Xu, X.; Yu, W.; Yang, X.; Chen, J. G. Trends in electrochemical stability of transition metal carbides and their potential use as supports for low-cost electrocatalysts. ACS Catal. 2014, 4, 1558-1562.
Avasarala, B.; Haldar, P. Durability and degradation mechanism of titanium nitride based electrocatalysts for PEM (proton exchange membrane) fuel cell applications. Energy 2013, 57, 545-553.
Zhang, R. Q.; Lee, T. H.; Yu, B. D.; Stampfl, C.; Soon, A. The role of titanium nitride supports for single-atom platinum-based catalysts in fuel cell technology. Phys. Chem. Chem. Phys. 2012, 14, 16552-16557.
Ma, X.; Meng, H.; Cai, M.; Shen, P. K. Bimetallic carbide nanocomposite enhanced Pt catalyst with high activity and stability for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 1954-1957.
Xie, X.; Chen, S.; Ding, W.; Nie, Y.; Wei, Z. An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction. Chem. Commun. 2013, 49, 10112-10114.
Xie, X.; Xue, Y.; Li, L.; Chen, S.; Nie, Y.; Ding, W.; Wei, Z. Surface Al leached Ti3AlC2 substituting carbon for catalyst support served in a harsh corrosive electrochemical system. Nanoscale 2014, 6, 11035-11040.
Lv, H.; Mu, S. Nano-ceramic support materials for low temperature fuel cell catalysts. Nanoscale 2014, 6, 5063-5074.
Li, Y.; Li, Y.; Zhu, E.; McLouth, T.; Chiu, C. Y.; Huang, X.; Huang, Y. Stabilization of high-performance oxygen reduction reaction Pt electrocatalyst supported on reduced graphene oxide/carbon black composite. J. Am. Chem. Soc. 2012, 134, 12326-12329.
Ramesh, P.; Itkis, M. E.; Tang, J. M.; Haddon, R. C. SWNT-MWNT hybrid architecture for proton exchange membrane fuel cell cathodes. J. Phys. Chem. C 2008, 112, 9089-9094.
Wang, Y. J.; Wilkinson, D. P.; Neburchilov, V.; Song, C.; Guest, A.; Zhang, J. Ta and Nb co-doped TiO2 and its carbon-hybrid materials for supporting Pt-Pd alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 12681-12685.
Kou, R.; Shao, Y.; Mei, D.; Nie, Z.; Wang, D.; Wang, C.; Viswanathan, V. V.; Park, S.; Aksay, I. A.; Lin, Y.; et al. Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points. J. Am. Chem. Soc. 2011, 133, 2541-2547.