AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Chinese brushes: From controllable liquid manipulation to template-free printing microlines

Qianbin Wang1Qingan Meng1Huan Liu1( )Lei Jiang1,2
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of EducationBeijing Key Laboratory of Bio-inspired Energy Materials and DevicesSchool of Chemistry and EnvironmentBeihang UniversityBeijing100191China
Beijing National Laboratory for Molecular Sciences (BNLMS)Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
Show Author Information

Graphical Abstract

Abstract

As a traditional writing instrument for calligraphy and painting, the Chinese brush has enjoyed a high reputation over the last 5, 000 years due to its ability to controllably handle liquid ink, and has been widely used to deposit ink into certain characters or figures as a means of cultural communication. In this mini-review, we first show how the key to the controllable liquid transfer in a Chinese brush lies in the anisotropic multi-scale structural features of the freshly emergent hairs. Then, drawing inspiration from this, applications in controllable liquid pumping, highly efficient liquid transfer and template-free printing microlines are addressed. We envision that the fundamentals of Chinese brushes and their applications in liquid manipulation mentioned in this review may also be extended to other liquid phase functional material systems.

References

1

Han, Y.; Li, X.; Fu, C. Origins of Chinese Culture. Asiapac Books Pte Ltd: Singapore, 2005.

2

Wang, Q. B.; Su, B.; Liu, H.; Jiang, L. Chinese brushes: Controllable liquid transfer in ratchet conical hairs. Advanced Materials 2014, 26, 4889-4894.

3

Da-Wei, K. Chinese Brushwork in Calligraphy and Painting: Its History, Aesthetics, and Techniques. Courier Dover Publications: New York, 2012.

4

Ju, J.; Zheng, Y. M.; Jiang, L. Bioinspired one-dimensional materials for directional liquid transport. Acc. Chem. Res. 2014, 47, 2342-2352.

5

Bai, H.; Ju, J.; Zheng, Y. M.; Jiang, L. Functional fibers with unique wettability inspired by spider silks. Adv. Mater. 2012, 24, 2786-2791.

6

Jiang, S. Q.; Huang, Q. M.; Ye, Q. X.; Gao, W. An effective method to detect and categorize digitized traditional Chinese paintings. Pattern Recogn. Lett. 2006, 27, 734-746.

7

Wang, Q. B.; Meng, Q. A.; Chen, M.; Liu, H.; Jiang, L. Bio-inspired multistructured conical copper wires for highly efficient liquid manipulation. ACS Nano 2014, 8, 8757-8764.

8

Sima, Q. Records of the Grand Historian: The Biography of Meng Tian. Zhonghua Book Company: Beijing, 1967.

9

Bico, J.; Roman, B.; Moulin, L.; Boudaoud, A. Adhesion: Elastocapillary coalescence in wet hair. Nature 2004, 432, 690-690.

10

Py, C.; Bastien, R.; Bico, J.; Roman, B.; Boudaoud, A. 3D aggregation of wet fibers. EPL 2007, 77, 44005.

11

Zheng, Y. M.; Bai, H.; Huang, Z. B.; Tian, X. L.; Nie, F. -Q.; Zhao, Y.; Zhai, J.; Jiang, L. Directional water collection on wetted spider silk. Nature 2010, 463, 640-643.

12

Lorenceau, É.; Quéré, D. Drops on a conical wire. J. Fluid Mech. 2004, 510, 29-45.

13

Ju, J.; Bai, H.; Zheng, Y. M.; Zhao, T. Y.; Fang, R. C.; Jiang, L. A multi-structural and multi-functional integrated fog collection system in cactus. Nat. commun. 2012, 3, 1247.

14

Bhushan, B. Nanoscale characterization of human hair and hair conditioners. Prog. Mater. Sci. 2008, 53, 585-710.

15
Robbins, C. R. Chemical and Physical Behavior of Human hair. Springer-Verlag: New York, 2002; Vol. 4.
16

Kamath, Y. K.; Dansizer, C. J.; Weigmann, H. -D. Wetting behavior of human hair fibers. J. Appl. Polym. Sci. 1978, 22, 2295-2306.

17

Lodge, R. A.; Bhushan, B. Wetting properties of human hair by means of dynamic contact angle measurement. J. Appl. Polym. Sci. 2006, 102, 5255-5265.

18

Extrand, C. W. Retention forces of a liquid slug in a rough capillary tube with symmetric or asymmetric features. Langmuir 2007, 23, 1867-1871.

19

Chu, K. -H.; Xiao, R.; Wang, E. N. Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat. Mater. 2010, 9, 413-417.

20

Malvadkar, N. A.; Hancock, M. J.; Sekeroglu, K.; Dressick, W. J.; Demirel, M. C. An engineered anisotropic nanofilm with unidirectional wetting properties. Nat. mater. 2010, 9, 1023-1028.

21

Atencia, J.; Beebe, D. J. Controlled microfluidic interfaces. Nature 2004, 437, 648-655.

22

Song, H.; Chen, D. L.; Ismagilov, R. F. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. 2006, 45, 7336-7356.

23

Song, H.; Tice, J. D.; Ismagilov, R. F. A microfluidic system for controlling reaction networks in time. Angew. Chem. Int. Ed. 2003, 42, 768-772.

24

Stone, H. A.; Stroock, A. D.; Ajdari, A. Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 2004, 36, 381-411.

25

Tan, Y. C.; Fisher, J. S.; Lee, A. I.; Cristini, V.; Lee, A. P. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. LabChip 2004, 4, 292-298.

26

Balu, B.; Berry, A. D.; Hess, D. W.; Breedveld, V. Patterning of superhydrophobic paper to control the mobility of micro-liter drops for two-dimensional lab-on-paper applications. Lab Chip 2009, 9, 3066-3075.

27

Chaudhury, M. K.; Whitesides, G. M. How to make water run uphill. Science 1992, 256, 1539-1541.

28

Grunze, M. Driven liquids. Science 1999, 283, 41-42.

29

Mettu, S.; Chaudhury, M. K. Motion of drops on a surface induced by thermal gradient and vibration. Langmuir 2008, 24, 10833-10837.

30

Yarin, A. L.; Liu, W. X.; Reneker, D. H. Motion of droplets along thin fibers with temperature gradient. J. Appl. Phys. 2002, 91, 4751-4760.

31

Bico, J.; Quéré, D. Liquid trains in a tube. Europhys. Lett. 2000, 51, 546.

32

Zhang, J. L.; Han, Y. C. Shape-gradient composite surfaces: Water droplets move uphill. Langmuir 2007, 23, 6136-6141.

33

Subramanian, R. S.; Moumen, N.; McLaughlin, J. B. Motion of a drop on a solid surface due to a wettability gradient. Langmuir 2005, 21, 11844-11849.

34

Moumen, N.; Subramanian, R. S.; McLaughlin, J. B. Experiments on the motion of drops on a horizontal solid surface due to a wettability gradient. Langmuir 2006, 22, 2682-2690.

35

Arulanandam, S.; Li, D. Q. Liquid transport in rectangular microchannels by electroosmotic pumping. Colloid Surf. A: Physicochem. Eng. Asp. 2000, 161, 89-102.

36

Zhang, J. H.; Cheng, Z. J.; Zheng, Y. M.; Jiang, L. Ratchet-induced anisotropic behavior of superparamagnetic microdroplet. Appl. Phys. Lett. 2009, 94, 144104.

37

Hancock, M. J.; Sekeroglu, K.; Demirel, M. C. Bioinspired directional surfaces for adhesion, wetting, and transport. Adv. Funct. Mater. 2012, 22, 2223-2234.

38

Lagubeau, G.; Le Merrer, M.; Clanet, C.; Quéré, D. Leidenfrost on a ratchet. Nat. Phys. 2011, 7, 395-398.

39

Zheng, Y. M.; Gao, X. F.; Jiang, L. Directional adhesion of superhydrophobic butterfly wings. Soft Matter 2007, 3, 178-182.

40

Bai, H.; Tian, X. L.; Zheng, Y. M.; Ju, J.; Zhao, Y.; Jiang, L. Direction controlled driving of tiny water drops on bioinspired artificial spider silks. Adv. Mater. 2010, 22, 5521-5525.

41

Feng, S. L.; Hou, Y. P.; Xue, Y.; Gao, L. C.; Jiang, L.; Zheng, Y. M. Photo-controlled water gathering on bio-inspired fibers. Soft Matter 2013, 9, 9294-9297.

42

Hou, Y. P.; Gao, L. C.; Feng, S. L.; Chen, Y.; Xue, Y.; Jiang, L.; Zheng, Y. M. Temperature-triggered directional motion of tiny water droplets on bioinspired fibers in humidity. Chem. Commun. 2013, 49, 5253-5255.

43

Huang, J. Y.; Lo, Y. C.; Niu, J. J.; Kushima, A.; Qian, X. F.; Zhong, L.; Mao, S. X.; Li, J. Nanowire liquid pumps. Nat. Nanotechnol. 2013, 8, 277-281.

44

Chen, Y.; Wang, L.; Xue, Y.; Jiang, L.; Zheng, Y. M. Bioinspired tilt-angle fabricated structure gradient fibers: Micro-drops fast transport in a long-distance. Scientific Reports 2013, 3. 2927

45

Hou, Y. P.; Chen, Y.; Xue, Y.; Wang, L.; Zheng, Y. M.; Jiang, L. Stronger water hanging ability and higher water collection efficiency of bioinspired fiber with multi-gradient and multi-scale spindle knots. Soft Matter 2012, 8, 11236-11239.

46

Li, K.; Ju, J.; Xue, Z. X.; Ma, J.; Feng, L.; Gao, S.; Jiang, L. Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water. Nat. Commun. 2013, 4, 2276

47

Anzenbacher, P.; Palacios, M. A. Polymer nanofibre junctions of attolitre volume serve as zeptomole-scale chemical reactors. Nat. Chem. 2009, 1, 80-86.

48

Millman, J. R.; Bhatt, K. H.; Prevo, B. G.; Velev, O. D. Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors. Nat. Mater. 2004, 4, 98-102.

49

Ferraro, P.; Coppola, S.; Grilli, S.; Paturzo, M.; Vespini, V. Dispensing nano-pico droplets and liquid patterning by pyroelectrodynamic shooting. Nat. Nanotechnol. 2010, 5, 429-435.

50

Ledesma-Aguilar, R.; Nistal, R.; Hernández-Machado, A.; Pagonabarraga, I. Controlled drop emission by wetting properties in driven liquid filaments. Nat. Mater. 2011, 10, 367-371.

51

Park, J. U.; Hardy, M.; Kang, S. J.; Barton, K.; Adair, K.; kishore Mukhopadhyay, D.; Lee, C. Y.; Strano, M. S.; Alleyne, A. G.; Georgiadis, J. G. High-resolution electrohydrodynamic jet printing. Nature Mater. 2007, 6, 782-789.

52

Tian, D. L.; Song, Y. L.; Jiang, L. Patterning of controllable surface wettability for printing techniques. Chem. Soc. Rev. 2013, 42, 5184-5209.

53

Tavana, H.; Jovic, A.; Mosadegh, B.; Lee, Q.; Liu, X.; Luker, K. E.; Luker, G. D.; Weiss, S.; Takayama, S. Nanolitre liquid patterning in aqueous environments for spatially defined reagent delivery to mammalian cells. Nat. Mater. 2009, 8, 736-741.

54

Fenn, J. B. Electrospray wings for molecular elephants (Nobel lecture). Angew. Chem. Int. Ed. 2003, 42, 3871-3894.

55

Hong, X.; Gao, X. F.; Jiang, L. Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet. J. Am. Chem. Soc. 2007, 129, 1478-1479.

56

Wheeler, T. D.; Stroock, A. D. The transpiration of water at negative pressures in a synthetic tree. Nature 2008, 455, 208-212.

57

Lewis, J. A.; Gratson, G. M. Direct writing in three dimensions. Mater. Today 2004, 7, 32-39.

58

Joannopoulos, J. D.; Villeneuve, P. R.; Fan, S. H. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143-149.

59

Liu, J. W.; Liang, H. W.; Yu, S. H. Macroscopic-scale assembled nanowire thin films and their functionalities. Chem. Rev. 2012, 112, 4770-4799.

60

Liu, J. W.; Zhu, J. H.; Zhang, C. L.; Liang, H. W.; Yu, S. H. Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J. Am. Chem. Soc. 2010, 132, 8945-8952.

61

Russo, A.; Ahn, B. Y.; Adams, J. J.; Duoss, E. B.; Bernhard, J. T.; Lewis, J. A. Pen-on-paper flexible electronics. Adv. Mater. 2011, 23, 3426-3430.

62

Sekine, S.; Ido, Y.; Miyake, T.; Nagamine, K.; Nishizawa, M. Conducting polymer electrodes printed on hydrogel. J. Am. Chem. Soc. 2010, 132 13174-13175.

63

Zheng, Z. J.; Daniel, W. L.; Giam, L. R.; Huo, F. W.; Senesi, A. J.; Zheng, G. F.; Mirkin, C. A. Multiplexed protein arrays enabled by polymer pen lithography: addressing the inking challenge. Angew. Chem. 2009, 121, 7762-7765.

64

Sun, Y. G.; Rogers, J. A. Fabricating semiconductor nano/ microwires and transfer printing ordered arrays of them onto plastic substrates. Nano Lett. 2004, 4, 1953-1959.

65

Wilbur, J. L.; Kumar, A.; Kim, E.; Whitesides, G. M. Microfabrication by microcontact printing of self-assembled monolayers. Adv. Mater. 1994, 6, 600-604.

66

Thelander, C.; Agarwal, P.; Brongersma, S.; Eymery, J.; Feiner, L. F.; Forchel, A.; Scheffler, M.; Riess, W.; Ohlsson, B. J.; Gösele, U.; et al. Nanowire-based one-dimensional electronics. Mater. Today 2006, 9, 28-35.

67

Braunschweig, A. B.; Huo, F. W.; Mirkin, C. A. Molecular printing. Nat. Chem. 2009, 1, 353-358.

Nano Research
Pages 97-105
Cite this article:
Wang Q, Meng Q, Liu H, et al. Chinese brushes: From controllable liquid manipulation to template-free printing microlines. Nano Research, 2015, 8(1): 97-105. https://doi.org/10.1007/s12274-014-0699-1
Part of a topical collection:

809

Views

23

Crossref

N/A

Web of Science

22

Scopus

1

CSCD

Altmetrics

Received: 15 September 2014
Revised: 21 November 2014
Accepted: 15 December 2014
Published: 03 January 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return