AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Superionic conductor-mediated growth of ternary ZnCdS nanorods over a wide composition range

Yongliang Zhang§Jing Cai§Tianpei JiQiang Wu( )Yuyang XuXizhang WangTao SunLijun YangZheng Hu( )
Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210093China

§These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Composition regulation of semiconductors can engineer their bandgaps and hence tune their properties. Herein, we report the first synthesis of ternary ZnxCd1-xS semiconductor nanorods by superionic conductor (Ag2S)-mediated growth with [(C4H9)2NCS2]2M (M = Zn, Cd) as single-source precursors. The compositions of the ZnxCd1-xS nanorods are conveniently tuned over a wide range by adjusting the molar ratio of the corresponding precursors, leading to tunable bandgaps and hence the progressive evolution of the light absorption and photoluminescence spectra. The nanorods present well-distributed size and length, which are controlled by the uniform Ag2S nanoparticles and the fixed amount of the precursors. The results suggest the great potential of superionic conductor-mediated growth in composition regulation and bandgap engineering of chalcogenide nanowires/nanorods.

Electronic Supplementary Material

Download File(s)
12274_2015_708_MOESM1_ESM.pdf (3.8 MB)

References

1

Dasgupta, N. P.; Sun, J. W.; Liu, C.; Brittman, S.; Andrews, S. C.; Lim, J.; Gao, H. W.; Yan, R. X.; Yang, P. D. 25th anniversary article: Semiconductor nanowires—Synthesis, characterization, and applications. Adv. Mater. 2014, 26, 2137-2184.

2

Yu, H.; Li, J. B.; Loomis, R. A.; Wang, L. W.; Buhro, W. E. Two-versus three-dimensional quantum confinement in indium phosphide wires and dots. Nat. Mater. 2003, 2, 517-520.

3

Zhang, Y. J.; Liu, Y. S.; Li, C. Y.; Chen, X. Y.; Wang, Q. B. Controlled synthesis of Ag2S quantum dots and experimental determination of the exciton Bohr radius. J. Phys. Chem. C 2014, 118, 4918-4923.

4

Sánchez-Royo, J. F.; Muñoz-Matutano, G.; Brotons-Gisbert, M.; Martínez-Pastor, J. P.; Segura, A.; Cantarero, A.; Mata, R.; Canet-Ferrer, J.; Tobias, G.; Canadell, E. et al. Electronic structure, optical properties, and lattice dynamics in atomically thin indium selenide flakes. Nano Res. 2014, 7, 1556-1568.

5

Kuykendall, T.; Ulrich, P.; Aloni, S.; Yang, P. D. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat. Mater. 2007, 6, 951-956.

6

He, C. Y.; Wu, Q.; Wang, X. Z.; Zhang, Y. L.; Yang, L. J.; Liu, N.; Zhao, Y.; Lu, Y. N.; Hu, Z. Growth and characterization of ternary AlGaN alloy nanocones across the entire composition range. ACS Nano 2011, 5, 1291-1296.

7

Pan, J.; Utama, M. I. B.; Zhang, Q.; Liu, X. F.; Peng, B.; Wong, L. M.; Sum, T. C.; Wang, S. J.; Xiong, Q. H. Composition-tunable vertically aligned CdSxSe1-x nanowire arrays via van der Waals epitaxy: Investigation of optical properties and photocatalytic behavior. Adv. Mater. 2012, 24, 4151-4156.

8

Onicha, A. C.; Petchsang, N.; Kosel, T. H.; Kuno, M. Controlled synthesis of compositionally tunable ternary PbSexS1-x as well as binary PbSe and PbS nanowires. ACS Nano 2012, 6, 2833-2843.

9

Liu, H. W.; Lu, J. P.; Zheng, M. R.; Tang, S. H.; Zhang, X. H.; Sow, C. H. Composition-dependent ultra-high photoconductivity in ternary CdSxSe1-x nanobelts as measured by optical pump-terahertz probe spectroscopy. Nano Res. 2013, 6, 808-821.

10

Liu, Y.; Zapien, J. A.; Shan, Y. Y.; Geng, C. Y.; Lee, C. S.; Lee, S. T. Wavelength-controlled lasing in ZnxCd1-xS single- crystal nanoribbons. Adv. Mater. 2005, 17, 1372-1377.

11

Kim, M. R.; Park, S. Y.; Jang, D. J. Composition variation and thermal treatment of ZnxCd1-xS alloy nanoparticles to exhibit controlled and efficient luminescence. J. Phys. Chem. C 2010, 114, 6452-6457.

12

Shen, S. L.; Wang, Q. B. Rational tuning the optical properties of metal sulfide nanocrystals and their applications. Chem. Mater. 2013, 25, 1166-1178.

13

Li, Q.; Meng, H.; Zhou, P.; Zheng, Y. Q.; Wang, J.; Yu, J. G.; Gong, J. R. Zn1-xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2-production activity. ACS Catal. 2013, 3, 882-889.

14

Li, W. J.; Li, D. Z.; Zhang, W. J.; Hu, Y.; He, Y. H.; Fu, X. Z. Microwave synthesis of ZnxCd1-xS nanorods and their photocatalytic activity under visible light. J. Phys. Chem. C 2010, 114, 2154-2159.

15

McPeak, K. M.; Opasanont, B.; Shibata, T.; Ko, D. K.; Becker, M. A.; Chattopadhyay, S.; Bui, H. P.; Beebe, T. P.; Bunker, B. A.; Murray, C. B. et al. Microreactor chemical bath deposition of laterally graded Cd1-xZnxS thin films: A route to high-throughput optimization for photovoltaic buffer layers. Chem. Mater. 2013, 25, 297-306.

16

Oliva, A. I.; Soliscanto, O.; Castrorodriguez, R.; Quintana, P. Formation of the band gap energy on CdS thin films growth by two different techniques. Thin Solid Films 2001, 391, 28-35.

17

Trindade, T.; O'Brien, P.; Pickett, N. L. Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chem. Mater. 2001, 13, 3843-3858.

18

Wang, L.; Wang, X. A.; Chen, R.; Wu, C. Y.; Yu, Y. Q.; Xu, J.; Hu, J. G.; Luo, L. B. Gallium doped n-type ZnxCd1-xS nanoribbons: Synthesis and photoconductivity properties. J. Appl. Phys. 2014, 115, 063108.

19

Biswas, S.; Kar, S.; Santra, S.; Jompol, Y.; Arif, M.; Khondaker, S. I. Solvothermal synthesis of high-aspect ratio alloy semiconductor nanowires: Cd1-xZnxS, a case study. J. Phys. Chem. C 2009, 113, 3617-3624.

20

He, C. Y.; Wang, X. Z.; Wu, Q.; Hu, Z.; Ma, Y. W.; Fu, J. J.; Chen, Y. Phase-equilibrium-dominated vapor-liquid-solid growth mechanism. J. Am. Chem. Soc. 2010, 132, 4843- 4847.

21

Zhu, G. X.; Xu, Z. Controllable growth of semiconductor heterostructures mediated by bifunctional Ag2S nanocrystals as catalyst or source-host. J. Am. Chem. Soc. 2011, 133, 148-157.

22

Shen, S. L.; Zhang, Y. J.; Peng, L.; Du, Y. P.; Wang, Q. B. Matchstick-shaped Ag2S-ZnS heteronanostructures preserving both UV/blue and near-infrared photoluminescence. Angew Chem Int. Ed. 2011, 50, 7115-7118.

23

Wang, J. L.; Chen, K. M.; Gong, M.; Xu, B.; Yang, Q. Solution-solid-solid mechanism: Superionic conductors catalyze nanowire growth. Nano Lett. 2013, 13, 3996-4000.

24

Wang, J. L.; Feng, H.; Chen, K. M.; Fan, W. L.; Yang, Q. Solution-phase catalytic synthesis, characterization and growth kinetics of Ag2S-CdS matchstick-like heteronanostructures. Dalton Trans. 2014, 43, 3990-3998.

25

Wang, J. L.; Yang, C. M.; Huang, Z. P.; Humphrey, M. G.; Jia, D.; You, T. T.; Chen, K. M.; Yang, Q.; Zhang, C. Seed-catalyzed heteroepitaxial growth and nonlinear optical properties of zinc selenide nanowires. J. Mater. Chem. 2012, 22, 10009-10014.

26

Xu, W. W.; Niu, J. Z.; Wang, H. Z.; Shen, H. B.; Li, L. S. Size, shape-dependent growth of semiconductor heterostructures mediated by Ag2Se nanocrystals as seeds. ACS Appl. Mater. Interfaces 2013, 5, 7537-7543.

27

Zhou, J. C.; Huang, F.; Xu, J.; Wang, Y. S. Controllable synthesis of metal selenide heterostructures mediated by Ag2Se nanocrystals acting as catalysts. Nanoscale 2013, 5, 9714-9719.

28

Han, W.; Yi, L. X.; Zhao, N.; Tang, A. W.; Gao, M. Y.; Tang, Z. Y. Synthesis and shape-tailoring of copper sulfide/ indium sulfide-based nanocrystals. J. Am. Chem. Soc. 2008, 130, 13152-13161.

29

Allen, R. L.; Moore, W. J. Diffusion of silver in silver sulfide. J. Phys. Chem. 1959, 63, 223-226.

30

Wang, D. S.; Xie, T.; Peng, Q.; Li, Y. D. Ag, Ag2S, and Ag2Se nanocrystals: Synthesis, assembly, and construction of mesoporous structures. J. Am. Chem. Soc. 2008, 130, 4016-4022.

31

Du, Y. P.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. B. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 2010, 132, 1470-1471.

32

Zhang, Y.; Hong, G. S.; Zhang, Y. J.; Chen, G. C.; Li, F.; Dai, H. J.; Wang, Q. B. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near- infrared window. ACS Nano 2012, 6, 3695-3702.

33

Tian, B. Z.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 2009, 4, 824-829.

34

Perea, D. E.; Li, N.; Dickerson, R. M.; Misra, A.; Picraux, S. T. Controlling heterojunction abruptness in VLS-grown semiconductor nanowires via in situ catalyst alloying. Nano Lett. 2011, 11, 3117-3122.

35

Denton, A. R.; Ashcroft, N. W. Vegard's law. Phys. Rev. A 1991, 43, 3161-3164.

36

Korgel, B. A.; Monbouquette, H. G. Controlled synthesis of mixed core and layered (Zn, Cd)S and (Hg, Cd)S nanocrystals within phosphatidylcholine vesicles. Langmuir 2000, 16, 3588-3594.

Nano Research
Pages 584-591
Cite this article:
Zhang Y, Cai J, Ji T, et al. Superionic conductor-mediated growth of ternary ZnCdS nanorods over a wide composition range. Nano Research, 2015, 8(2): 584-591. https://doi.org/10.1007/s12274-015-0708-z

597

Views

28

Crossref

N/A

Web of Science

29

Scopus

0

CSCD

Altmetrics

Received: 15 September 2014
Revised: 20 December 2014
Accepted: 26 December 2014
Published: 20 January 2015
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2015
Return