AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Gold nanoparticle/ZnO nanorod hybrids for enhanced reactive oxygen species generation and photodynamic therapy

Zhuo Kang1Xiaoqin Yan1Lanqing Zhao2Qingliang Liao1Kun Zhao1Hongwu Du2Xiaohui Zhang1Xueji Zhang3Yue Zhang1,4( )
State Key Laboratory for Advanced Metals and MaterialsSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083China
Department of BiotechnologySchool of Chemistry and Biology EngineeringUniversity of Science and Technology BeijingBeijing100083China
Research Center for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083China
Key Laboratory of New Energy Materials and TechnologiesUniversity of Science and Technology BeijingBeijing100083China
Show Author Information

Graphical Abstract

Abstract

Gold nanoparticle (Au NP)@ZnO nanorod (NR) (Au@ZnO) hybrids with various ZnO: Au molar ratios were developed to enhance the generation of reactive oxygen species (ROS) in photodynamic therapy (PDT) applications. Introducing a metal/semiconductor heterostructure interface between Au NPs and ZnO NRs modulated electron transfer under ultraviolet (UV) irradiation, which dramatically suppressed the electron-hole recombination in ZnO and simultaneously increased the amount of excited electrons with high energy at Au NP surfaces. Hence, the ROS yield of the nanohybrid was considerably improved over those of pristine Au NPs or ZnO NRs alone and demonstrated a "1 + 1 > 2 effect." This enhancement was strengthened with increases in the proportion of Au in the hybrid. The results showed that the Au@ZnO nanohybrids with a ZnO: Au ratio of 20:1 generated the highest ROS yield because they had the largest interface area between Au and ZnO, which in turn led to the lowest cell viability for HeLa and C2C12 cells during PDT. Furthermore, both ROS generation and cell destruction were positively correlated with nanohybrid dosage. The Au@ZnO hybrid (20:1, 100 μg/mL) resulted in HeLa cell viability as low as 28% after UV exposure for 2 min, which indicated its promising potential to improve the therapeutic efficacy of PDT.

Electronic Supplementary Material

Download File(s)
12274_2015_712_MOESM1_ESM.pdf (660.6 KB)

References

1

Guo, H. C.; Qian, H. S.; Idris, N. M.; Zhang, Y. Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer. Nanomedicine 2010, 6, 486-495.

2

Bae, B. C.; Na, K. Self-quenching polysaccharide-based nanogels of pullulan/folate-photosensitizer conjugates for photodynamic therapy. Biomaterials 2010, 31, 6325-6335.

3

Idris, N. M.; Gnanasammandhan, M. K.; Zhang, J.; Ho, P. C.; Mahendran, R.; Zhang, Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012, 18, 1580-1585.

4

Kato, H. Photodynamic therapy for lung cancer-a review of 19 years' experience. J. Photochem. Photobiol. B 1998, 42, 96-99.

5

Schuller, D. E.; McCaughan J. S.; Rock, R. P. Photodynamic therapy in head and neck cancer. Arch. Otolaryngol. 1985, 111, 351-355.

6

Skyrme, R. J.; French, A. J.; Datta, S. N.; Allman, R.; Mason, M. D.; Matthews, P. N. A phase-1 study of sequential mitomycin C and 5-aminolaevulinic acid-mediated photodynamic therapy in recurrent superficial bladder carcinoma. BJU Int. 2005, 95, 1206-1210.

7

Rhodes, L. E.; de Rie, M.; Enstrom, Y.; Groves, R.; Morken, T.; Goulden, V.; Wong, G. A.; Grob, J. J.; Varma, S.; Wolf, P. Photodynamic therapy using topical methyl aminolevulinate vs. surgery for nodular basal cell carcinoma: Results of a multicenter randomized prospective trial. Arch. Dermatol. 2004, 140, 17-23.

8

Henderson, B. W.; Dougherty, T. J. How does photodynamic therapy work? Photochem. Photobiol. 1992, 55, 145-157.

9

He, X. X.; Wu, X.; Wang, K. M.; Shi, B. H.; Hai, L. Methylene blue-encapsulated phosphonate-terminated silica nanoparticles for simultaneous in vivo imaging and photodynamic therapy. Biomaterials 2009, 30, 5601-5609.

10

Celli, J. P.; Spring, B. Q.; Rizvi, I.; Evans, C. L.; Samkoe, K. S.; Verma, S.; Pogue, B. W.; Hasan, T. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem. Rev. 2010, 110, 2795-2838.

11

Dougherty, T. J.; Gomer, C. J.; Henderson, B. W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. J. Nat. Cancer Inst. 1998, 90, 889-905.

12

Foote, C. S. Photosensitized oxygenations and the role of singlet oxygen. Acc. Chem. Res. 1968, 1, 104-110.

13

Buttke, T. M.; Sandstrom, P. A. Oxidative stress as a mediator of apoptosis. Immunol. Today 1994, 15, 7-10.

14

Brown, S. B.; Brown, E. A.; Walker, I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 2004, 5, 497-508.

15

Zhang, H. J.; Chen, B. A.; Jiang, H.; Wang, C. L.; Wang, H. P.; Wang, X. M. A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials 2011, 32, 1906-1914.

16

Guo, D. D.; Wu, C. H.; Jiang, H.; Li, Q. N.; Wang, X. M.; Chen, B. A. Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation. J. Photochem. Photobiol. B 2008, 93, 119-126.

17

Ostrovsky, S.; Kazimirsky, G.; Gedanken, A.; Brodie, C. Selective cytotoxic effect of ZnO nanoparticles on glioma cells. Nano Res. 2009, 2, 882-890.

18

Li, J. Y.; Guo, D. D.; Wang, X. M.; Wang, H. P.; Jiang, H.; Chen, B. A. The photodynamic effect of different size ZnO nanoparticles on cancer cell proliferation in vitro. Nanoscale Res. Lett. 2010, 5, 1063-1071.

19

Zhang, Y. B.; Chen, W.; Wang, S. P.; Liu, Y. F.; Pope, C. Phototoxicity of zinc oxide nanoparticle conjugatesin human ovarian cancer NIH: OVCAR-3 cells. J. Biomed. Nanotechnol. 2008, 4, 432-438.

20

Ahamed, M.; Akhtar, M. J.; Raja, M.; Ahmad, I.; Siddiqui, M. K. J.; AlSalhi, M. S.; Alrokayan, S. A. ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via P53, survivin and Bax/Bcl-2 pathways: Role of oxidative stress. Nanomedicine 2011, 7, 904-913.

21

Dutta, R. K.; Nenavathu, B. P.; Gangishetty, M. K.; Reddy, A. V. R. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surf. B 2012, 94, 143-150.

22

Misawa, M.; Takahashi, J. Generation of reactive oxygen species induced by gold nanoparticles under X-ray and UV irradiations. Nanomedicine 2011, 7, 604-614.

23

Khaing Oo, M. K.; Yang, Y. M.; Hu, Y.; Gomez, M.; Du, H.; Wang, H. J. Gold nanoparticle-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin IX. ACS Nano 2012, 6, 1939-1947.

24

Minai, L.; Yeheskely-Hayon, D.; Yelin, D. High levels of reactive oxygen species in gold nanoparticle-targeted cancer cells following femtosecond pulse irradiation. Sci. Rep. 2013, 3. 2146.

25

Wang, S. T.; Chen, K. J.; Wu, T. H.; Wang, H.; Lin, W. Y.; Ohashi, M.; Chiou, P. Y.; Tseng, H. R. Photothermal effects of supramolecularly assembled gold nanoparticles for the targeted treatment of cancer cells. Angew. Chem. Int. Edit. 2010, 49, 3777-3781.

26

Zhao, Y. Y.; Jiang, X. Y. Multiple strategies to activate gold nanoparticles as antibiotics. Nanoscale 2013, 5, 8340-8350.

27

Khaing Oo, M. K.; Yang, X. C.; Du, H.; Wang, H. J. 5-Aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer. Nanomedicine 2008, 3, 777-786.

28

Wang, J.; Zhu, G. Z.; You, M. X.; Song, E. Q.; Shukoor, M. I.; Zhang, K. J.; Altman, M. B.; Chen, Y.; Zhu, Z.; Huang, C. Z. et al. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 2012, 6, 5070-5077.

29

Tong, L.; Zhao, Y.; Huff, T. B.; Hansen, M. N.; Wei, A.; Cheng, J. X. Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv. Mater. 2007, 19, 3136-3141.

30

Li, J. L.; Day, D.; Gu, M. Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods. Adv. Mater. 2008, 20, 3866-3871.

31

Jang, B.; Park, J. Y.; Tung, C. H.; Kim, I. H.; Choi, Y. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 2011, 5, 1086-1094.

32

Choi, W. I.; Kim, J. Y.; Kang, C.; Byeon, C. C.; Kim, Y. H.; Tae, G. Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 2011, 5, 1995-2003.

33

Wang, N. N.; Zhao, Z. L.; Lv, Y. F.; Fan, H. H.; Bai, H. R.; Meng, H. M.; Long, Y. Q.; Fu, T.; Zhang, X. B.; Tan, W. H. Gold nanorod-photosensitizer conjugate with extracellular pH-driven tumor targeting ability for photothermal/photodynamic therapy. Nano Res. 2014, 7, 1291-1301.

34

Terentyuk, G.; Panfilova, E.; Khanadeev, V.; Chumakov, D.; Genina, E.; Bashkatov, A.; Tuchin, V.; Bucharskaya, A.; Maslyakova, G.; Khlebtsov, N. et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res. 2014, 7, 325-337.

35

Gao, L.; Fei, J. B.; Zhao, J.; Li, H.; Cui, Y.; Li, J. B. Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. ACS Nano 2012, 6, 8030-8040.

36

Xia, Y. N.; Li, W. Y.; Cobley, C. M.; Chen, J. Y.; Xia, X. H.; Zhang, Q.; Yang, M. X.; Cho, E. C.; Brown, P. K. Gold nanocages: From synthesis to theranostic applications. Acc. Chem. Res. 2011, 44, 914-924.

37

Liu, H. Y.; Chen, D.; Tang, F. Q.; Du, G. J.; Li, L. L.; Meng, X. W.; Liang, W.; Zhang, Y. D.; Teng, X.; Li, Y. Photothermal therapy of lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres. Nanotechnology 2008, 19, 455101.

38

Li, C. M.; Chen, T.; Ocsoy, I.; Zhu, G. Z.; Yasun, E.; You, M. X.; Wu, C. C.; Zheng, J.; Song, E.; Huang, C. Z.; Tan, W. H. Gold-coated Fe3O4 nanoroses with five unique functions for cancer cell targeting, imaging, and therapy. Adv. Func. Mater. 2014, 24, 1772-1780.

39

He, W. W.; Kim, H. K.; Wamer, W. G.; Melka, D.; Callahan, J. H.; Yin, J. J. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J. Am. Chem. Soc. 2013, 136, 750-757.

40

Chatterjee, D. K.; Fong, L. S.; Zhang, Y. Nanoparticles in photodynamic therapy: An emerging paradigm. Adv. Drug Deliv. Rev. 2008, 60, 1627-1637.

41

Paszko, E.; Ehrhardt, C.; Senge, M. O.; Kelleher, D. P.; Reynolds, J. V. Nanodrug applications in photodynamic therapy. Photodiagn. Photodyn. 2011, 8, 14-29.

42

Shan, J. N.; Budijono, S. J.; Hu, G. H.; Yao, N.; Kang, Y. B.; Ju, Y. G.; Prud'homme, R. K. Pegylated composite nanoparticles containing upconverting phosphors and meso-tetraphenyl porphine (TPP) for photodynamic therapy. Adv. Func. Mater. 2011, 21, 2488-2495.

43

Diebold, U.; Koplitz, L. V.; Dulub, O. Atomic-scale properties of low-index ZnO surfaces. Appl. Surf. Sci. 2004, 237, 336-342.

44

Zhang, W. Q.; Lu, Y.; Zhang, T. K.; Xu, W. P.; Zhang, M.; Yu, S. H. Controlled synthesis and biocompatibility of water-soluble ZnO nanorods/Au nanocomposites with tunable UV and visible emission intensity. J. Phys. Chem. C 2008, 112, 19872-19877.

45

Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935-938.

46

Soh, N. Recent advances in fluorescent probes for the detection of reactive oxygen species. Anal. Bioanal. Chem. 2006, 386, 532-543.

47

Crow, J. P. Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: Implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide 1997, 1, 145-157.

48

Bai, X. D.; Wang, E. G.; Gao, P. X.; Wang, Z. L. Measuring the work function at a nanobelt tip and at a nanoparticle surface. Nano Lett. 2003, 3, 1147-1150.

49

Wang, X. D.; Summers, C. J.; Wang, Z. L. Self-attraction among aligned Au/ZnO nanorods under electron beam. Appl. Phys. Lett. 2005, 86, 013111.

50

Wang, X.; Kong, X. G.; Yu, Y.; Zhang, H. Synthesis and characterization of water-soluble and bifunctional ZnO-Au nanocomposites. J. Phys. Chem. C 2007, 111, 3836-3841.

51

Cui, S. S.; Yin, D. Y.; Chen, Y. Q.; Di, Y. F.; Chen, H. Y.; Ma, Y. X.; Achilefu, S.; Gu, Y. Q. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano 2012, 7, 676-688.

52

Zhao, F.; Zhao, Y.; Liu, Y.; Chang, X. L.; Chen, C. Y.; Zhao, Y. L. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 2011, 7, 1322-1337.

53

Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006, 6, 662-668.

54

Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L. Scanning probe study on the piezoelectric effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647-4655.

55

Zhao, Y. G.; Fang, X. F.; Gu, Y. S.; Yan, X. Q.; Kang, Z.; Zheng, X.; Lin, P.; Zhao, L. C.; Zhang, Y. Gold nanoparticles coated zinc oxide nanorods as the matrix for enhanced l-lactate sensing. Colloids Surf. B 2015, 126, 476-480.

Nano Research
Pages 2004-2014
Cite this article:
Kang Z, Yan X, Zhao L, et al. Gold nanoparticle/ZnO nanorod hybrids for enhanced reactive oxygen species generation and photodynamic therapy. Nano Research, 2015, 8(6): 2004-2014. https://doi.org/10.1007/s12274-015-0712-3

493

Views

85

Crossref

N/A

Web of Science

88

Scopus

7

CSCD

Altmetrics

Received: 26 August 2014
Revised: 25 December 2014
Accepted: 02 January 2015
Published: 16 April 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return