Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Two-dimensional hybrid materials consisting of heterogeneous domains have been of great interest. Using empirical molecular dynamical simulation, we show that the morphology of such hybrid 2D materials can extend into the third dimension via strong warping intrinsic to the interfaces between the domains. The interface warping stems from the compressive stress in the domain with a larger lattice constant and even penetrates into the stretched domain. Based on classic plate theory, we analytically quantify the amplitude, wave length and penetration depth of the interface warping as functions of the lattice mismatch, achieving good agreement with the simulations. Moreover, we propose that periodically placing pentagon-heptagon dislocations along the interface can eliminate the warping in the 2D material and such defective interface can be more favorable than the warped one over a critical domain size, which is consistent with recent experimental observations. Our results suggest that the interface warping in 2D hybrid materials should be considered in further exploring their promising properties.
Ci, L.; Song, L.; Jin, C.; Jariwala, D.; Wu, D.; Li, Y.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L.; Liu, F.; Ajayan, P. M. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430-435.
Gannett, W.; Regan, W.; Watanabe, K.; Taniguchi, T.; Crommie, M. F.; Zettl, A. Boron nitride substrates for high mobility chemical vapor deposited graphene. Appl. Phys. Lett. 2011, 98, 242105.
Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Peres, N. M. R.; Leist, J.; Geim, A. K.; Novoselov, K. S.; et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science (New York, N.Y. ), 2012, 335, 947-50.
Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech 2010, 5, 722-726.
Sutter, P.; Cortes, R.; Lahiri, J.; Sutter, E. Interface formation in monolayer graphene-boron nitride heterostructures. Nano Lett. 2012, 12, 4869-4874.
Liu, Z.; Ma, L.; Shi, G.; Zhou, W.; Gong, Y.; Lei, S.; Yang, X.; Zhang, J.; Yu, J.; Hackenberg, K. P.; Babakhani, A.; Idrobo, J. -C.; Vajtai, R.; Lou, J.; et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotech. 2013, 8, 119-24.
Gao, Y.; Zhang, Y.; Chen, P.; Li, Y.; Liu, M.; Gao, T.; Ma, D.; Chen, Y.; Cheng, Z.; Qiu, X.; Duan, W.; Liu, Z. Toward single-layer uniform hexagonal boron nitride-graphene patchworks with zigzag linking edges. Nano Lett. 2013, 13, 3439-43.
Bhowmick, S.; Singh, A. K.; Yakobson, B. I. Quantum dots and nanoroads of graphene embedded in hexagonal boron nitride. J. Phys. Chem. 2011, 9889-9893.
Zhang, Z.; Yang, Y.; Yakobson, B. I. Grain boundaries in hybrid two-dimensional materials. J. Mech. Phys. Solid 2014, 70, 62-70.
Zhang, Z.; Guo, W. Energy-gap modulation of BN ribbons by transverse electric fields: First-principles calculations. Phys. Rev. B 2008, 77, 075403.
Zhou, H.; Zhu, J.; Liu, Z.; Yan, Z.; Fan, X.; Lin, J.; Wang, G.; Yan, Q.; Yu, T.; Ajayan, P. M.; Tour, J. M. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Res. 2014, 7, 1232-1240.
Guo, N.; Wei, J. Q.; Jia, Y.; Sun, H. H.; Wang, Y. H.; Zhao, K. H.; Shi, X. L. Zhang, L. W.; Li, X. M.; Cao, A. Y.; Zhu, H. W.; Wang, K. L. Fabrication of large area hexagonal boron nitride thin films for bendable capacitors. Nano Res. 2013, 6, 602-610.
Han, M.; Özyilmaz, B.; Zhang, Y.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.
Son, Y. -W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.
Barone, V.; Peralta, J. E. Magnetic boron nitride nanoribbons with tunable electronic properties. Nano Lett. 2008, 8, 2210-2214.
Quhe, R.; Zheng, J.; Luo, G.; Liu, Q.; Qin, R.; Zhou, J.; Yu, D.; Nagase, S.; Mei, W. -N.; Gao, Z.; Lu, J. Tunable and sizable band gap of single-layer graphene sandwiched between hexagonal boron nitride. NPG Asia Mater. 2012, 4, e6.
Fan, Y.; Zhao, M.; Wang, Z.; Zhang, X.; Zhang, H. Tunable electronic structures of graphene/boron nitride heterobilayers. Appl. Phys. Lett. 2011, 98, 083103.
Muchharla, B.; Pathak, A.; Liu, Z.; Song, L.; Jayasekera, T.; Kar, S.; Vajtai, R.; Balicas, L.; Ajayan, P. M.; Talapatra, S.; Ali, N. Tunable electronics in large-area atomic layers of boron-nitrogen-carbon. Nano Lett. 2013, 13, 3476-3481.
Li, C.; Jin, W.; Xiang, H.; Lefkidis, G.; Hübner, W. Theory of laser-induced ultrafast magneto-optic spin flip and transfer in charged two-magnetic-center molecular ions: Role of bridging atoms. Phys. Rev. B 2011, 84, 054415.
Li, C.; Zhang, S.; Jin, W.; Lefkidis, G.; Wolfgang, H. Controllable spin-dynamics cycles and ERASE functionality on quasilinear molecular ions. Phys. Rev. B 2014, 184404, 2-6.
Guo, W.; Zhong, W.; Dai, Y.; Li, S. Coupled defect-size effects on interlayer friction in multiwalled carbon nanotubes. Phys. Rev. B 2005, 72, 075409.
Guo, W.; Guo, Y.; Gao, H.; Zheng, Q.; Zhong, W. Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes. Phys. Rev. Lett. 2003, 91, 125501.
Chandratre, S.; Sharma, P. Coaxing graphene to be piezoelectric. Appl. Phys. Lett. 2012, 100, 023114
Rasool, H. I.; Ophus, C.; Klug, W. S.; Zettl, A.; Gimzewski, J. K. Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nat. Commun. 2013, 4, 1-7.
Liu, F.; Ming, P.; Li, J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 2007, 76, 064120.
Wei, Y.; Wang, B.; Wu, J.; Yang, R.; Dunn, M. L. Bending rigidity and Gaussian bending stiff ness of single-layered graphene. Nano Lett. 2013, 13, 26-30.
Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science (New York, N.Y. ), 2008, 321, 385-388.
Shenoy, V.; Reddy, C.; Ramasubramaniam, A.; Zhang, Y. Edge-stress-induced warping of graphene sheets and nanoribbons. Phys. Rev. Lett. 2008, 101, 245501.
Bets, K. V.; Yakobson, B. I. Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons. Nano Res. 2010, 2, 161-166.
Fasolino, A.; Los, J. H.; Katsnelson, M. I. Intrinsic ripples in graphene. Nat. Mater. 2007, 6, 858-861.
Zhang, Y.; Brar, V. W.; Girit, C.; Zettl, A.; Crommie, M. F. Origin of spatial charge inhomogeneity in graphene. Nat Phys. 2009, 5, 722-726.
Lu, J.; Gomes, L. C.; Nunes, R. W.; Castro Neto, A. H.; Loh, K. P. Lattice relaxation at the interface of two-dimensional crystals: Graphene and hexagonal boron-nitride. Nano Lett. 2014, 14, 5133-5139.
Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. of Comp. Phys. 1995, 117, 1-42.
Brenner, D. W.; Shenderova, O. A.; Harrison, J. A.; Stuart, S. J.; Ni, B.; Sinnott, S. B. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. : Conden. Matter. 2002, 14, 783-802.
Stuart, S. J.; Tutein, A. B.; Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472.
Liu, Y.; Bhowmick, S.; Yakobson, B. I. BN white graphene with "colorful" edges: The energies and morphology. Nano Lett. 2011, 11, 3113-3116.
Timoshenko, S., Woinowsky-Krieger, S. Theory of Plates and Shells. McGraw-Hill: New York, 1959.