AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Freestanding macroscopic metal-oxide nanotube films derived from carbon nanotube film templates

He MaYang Wei( )Jiangtao WangXiaoyang LinWenyun WuYang WuLing ZhangPeng LiuJiaping WangQunqing LiShoushan FanKaili Jiang( )
State Key Laboratory of Low-Dimensional Quantum PhysicsDepartment of Physics & Tsinghua-Foxconn Nanotechnology Research CenterTsinghua UniversityBeijing100084China
Show Author Information

Graphical Abstract

Abstract

Aligned carbon nanotube films coated with amorphous carbon were developed into novel templates by atomic layer deposition. Freestanding macroscopic metal-oxide nanotube films were then successfully synthesized by using these templates. The reactive amorphous carbon layer greatly improved the nuclei density, which ensured the high quality of the films and allowed for precise control of the wall thickness of the nanotubes. Using template-synthesized alumina nanotube films, we demonstrate a humidity sensor with a high response speed, a transmission electron microscopy (TEM) grid, and a catalyst support. The cross-stacked assembly, ultrathin thickness, chemical inertness, and high thermal stability of the alumina nanotube films contributed to the excellent performance of these devices. In addition, it is expected that the metal-oxide nanotube films would have significant potential owing to their material richness, macroscopic appearance, flexibility, compatibility with the semiconducting technologies, and the feasibility of mass production.

Electronic Supplementary Material

Download File(s)
12274_2015_714_MOESM1_ESM.pdf (924.3 KB)

References

1

Wang, M. Y; Ioccozia, J.; Sun, L.; Lin, C. J.; Lin Z. Q. Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis. Energ. Environ. Sci. 2014, 7, 2182-2202.

2

Favors, Z.; Wang, W.; Bay, H. H.; George, A.; Ozkan, M.; Ozkan, C. S. Stable cycling of SiO2 nanotubes as high- performance anodes for lithium-ion batteries. Sci. Rep. 2014, 4, 4605-4612.

3

Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 2005, 6, 215-218.

4

Hwang, Y. J.; Hahn, C.; Liu, B.; Yang, P. D. Photoelectrochemical properties of TiO2 nanowire arrays: A study of the dependence on length and atomic layer deposition coating. ACS Nano 2012, 6, 5060-5069.

5

Zheng, Q.; Zhou, B. X.; Bai, J.; Li, L. H.; Jin, Z. J.; Zhang, J. L.; Li, J. H.; Liu, Y. B.; Cai, W. M.; Zhu, X. Y. Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand. Adv. Mater. 2008, 20, 1044-1049.

6

Marichy, C.; Donato, N.; Willinger, M. G.; Latino, M.; Karpinsky, D.; Yu, S. H.; Neri, G.; Pinna, N. Tin dioxide sensing layer grown on tubular nanostructures by a non- aqueous atomic layer deposition process. Adv. Funct. Mater. 2011, 21, 658-666.

7

Liu, N.; Chen, X. Y.; Zhang, J. L.; Schwank, J. W. A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catal. Today 2014, 225, 34-51.

8

Lee, C. H.; Xie, M.; Kayastha, V.; Wang, J. S.; Yap, Y. K. Patterned growth of boron nitride nanotubes by catalytic chemical vapor deposition. Chem. Mater. 2010, 22, 1782-1787.

9

Métraux, C.; Grobéty, B. Tellurium nanotubes and nanorods synthesized by physical vapor deposition. J. Mater. Res. 2011, 19, 2159-2164.

10

Lin, J.; Guo, M.; Yip, C. T.; Lu, W.; Zhang, G. G.; Liu, X. L.; Zhou, L. M.; Chen, X. F.; Huang, H. T. High temperature crystallization of free-standing anatase TiO2 nanotube membranes for high efficiency dye-sensitized solar cells. Adv. Funct. Mater. 2013, 23, 5952-5960.

11

Mohammadpour, A.; Waghmare, P. R.; Mitra, S. K.; Shankar, K. Anodic growth of large-diameter multipodal TiO2 nanotubes. ACS Nano 2010, 4, 7421-7430.

12

Miikkulainen, V.; Leskelä, M.; Ritala, M.; Puurunen, R. L. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. J. Appl. Phys. 2013, 113, 021301-021402.

13

Marichy, C.; Bechelany, M.; Pinna, N. Atomic layer deposition of nanostructured materials for energy and environmental applications. Adv. Mater. 2012, 24, 1017-1032.

14

Shin, H.; Jeong, D. K.; Lee, J.; Sung, M. M.; Kim, J. Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness. Adv. Mater. 2004, 16, 1197-1200.

15

Peng, Q.; Sun, X. Y.; Spagnola, J. C.; Hyde, G. K.; Spontak, R. J.; Parsons, G. N. Atomic layer deposition on electrospun polymer fibers as a direct route to Al2O3 microtubes with precise wall thickness control. Nano Lett. 2007, 7, 719-722.

16

Gu, D. F.; Baumgart, H.; Namkoong, G.; Abdel-Fattah, T. M. Atomic layer deposition of ZrO2 and HfO2 nanotubes by template replication. Electrochem. Solid-State Lett. 2009, 12, K25-K28.

17

Qin, Y.; Vogelgesang, R.; Eβlinger, M.; Sigle, W.; van Aken, P. V.; Moutanabbir, O.; Knez, M. Bottom-up tailoring of plasmonic nanopeapods making use of the periodical topography of carbon nanocoil templates. Adv. Funct. Mater. 2012, 22, 5157-5165.

18

Qin, Y.; Kim, Y.; Zhang, L. B.; Lee, S. M.; Yang, R. B.; Pan, A. L.; Mathwig, K.; Alexe, M.; Gösele, U.; Knez, M. Preparation and elastic properties of helical nanotubes obtained by atomic layer deposition with carbon nanocoils as templates. Small 2010, 6, 910-914.

19

Ras, R. H. A.; Kemell, M.; de Wit, J.; Ritala, M.; ten Brinke, G.; Leskelä, M.; Ikkala, O. Hollow inorganic nanospheres and nanotubes with tunable wall thicknesses by atomic layer deposition on self-assembled polymeric templates. Adv. Mater. 2007, 19, 102-106.

20

Wang, X. D.; Graugnard, E.; King, J. S.; Wang, Z. L.; Summers, C. J. Large-scale fabrication of ordered nanobowl arrays. Nano Lett. 2004, 4, 2223-2226.

21

Peng, Q.; Sun, X. J.; Spagnola, J. C.; Saquing, C.; Khan, S. A.; Spontak, R. J.; Parsons, G. N. Bi-directional kirkendall effect in coaxial microtube nanolaminate assemblies fabricated by atomic layer deposition. ACS Nano 2009, 3, 546-554.

22

Korhonen, J. T.; Hiekkataipale, P.; Malm, J.; Karppinen, M.; Ikkala, O.; Ras, R. H. A. Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates. ACS Nano 2011, 5, 1967-1974.

23

Li, F. B.; Yao, X. P.; Wang, Z. G.; Xing, W. H.; Jin, W. Q.; Huang, J.; Wang, Y. Highly porous metal oxide networks of interconnected nanotubes by atomic layer deposition. Nano Lett. 2012, 12, 5033-5038.

24

Liu, K.; Sun, Y. H.; Liu, P.; Lin, X. Y.; Fan, S. S.; Jiang, K. L. Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors. Adv. Funct. Mater. 2011, 21, 2721-2728.

25

Marichy, C.; Tessonnier, J. P.; Ferro, M. C.; Lee, K. H.; Schlögl, R.; Pinna, N.; Willinger, M. G. Labeling and monitoring the distribution of anchoring sites on functionalized CNTs by atomic layer deposition. J. Mater. Chem. 2012, 22, 7323-7330.

26

Zhang, X. B.; Jiang, K. L.; Feng, C.; Liu, P.; Zhang, L. N.; Kong, J.; Zhang, T. H.; Li, Q. Q.; Fan, S. S. Spinning and processing continuous yarns from 4-inch wafer scale super- aligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505-1510.

27

Puurunen, R. L.; Vandervorst, W. Island growth as a growth mode in atomic layer deposition: A phenomenological model. J. Appl. Phys. 2004, 96, 7686-7695.

28

Farmer, D. B.; Gordon, R. G. Atomic layer deposition on suspended single-walled carbon nanotubes via gas-phase noncovalent functionalization. Nano Lett. 2006, 6, 699-703.

29

Gomathi, A.; Vivekchand, S. R. C.; Govindaraj, A.; Rao, C. N. R. Chemically bonded ceramic oxide coatings on carbon nanotubes and inorganic nanowires. Adv. Mater. 2005, 17, 2757-2761.

30

Willinger, M. G.; Neri, G.; Bonavita, A.; Micali, G.; Rauwel, E.; Herntrich, T.; Pinna, N. The controlled deposition of metal oxides onto carbon nanotubes by atomic layer deposition: Examples and a case study on the application of V2O4 coated nanotubes in gas sensing. Phys. Chem. Chem. Phys. 2009, 11, 3615-3622.

31

Willinger, M. G.; Neri, G.; Rauwel, E.; Bonavita A.; Micali, G.; Pinna, N. Vanadium oxide sensing layer grown on carbon nanotubes by a new atomic layer deposition process. Nano Lett. 2008, 8, 4201-4204.

32

Meng, X. B.; Ionescu, M.; Banis, M. N.; Zhong, Y.; Liu, H.; Zhang, Y.; Sun, S. H.; Li, R. Y.; Sun, X. L. Heterostructural coaxial nanotubes of CNT@Fe2O3 via atomic layer deposition: Effects of surface functionalization and nitrogen-doping. J. Nanopart. Res. 2010, 13, 1207-1218.

33

Kim, U. J.; Liu, X. M; Furtado, C. A.; Chen, G.; Saito, R.; Jiang, J.; Dresselhaus, M. S.; Eklund, P. C. Infrared-active vibrational modes of single-walled carbon nanotubes. Phys. Rev. Lett. 2005, 95, 157402-157406.

34

Jiang, K. L.; Wang, J. P.; Li, Q. Q.; Liu, L.; Liu, C. H.; Fan, S. S. Superaligned carbon nanotube arrays, films, and yarns: A road to applications. Adv. Mater. 2011, 23, 1154-1161.

35

Cheng, B. C.; Tian, B. X.; Xie, C. C.; Xiao, Y. H.; Lei, S. J. Highly sensitive humidity sensor based on amorphous Al2O3 nanotubes. J. Mater. Chem. 2011, 21, 1907-1912.

36

Stere, C. E.; Adress, W.; Burch, R.; Chansai, S.; Goguet, A.; Graham, W. G.; De Rosa, F.; Palma, V.; Hardacre, C. Ambient temperature hydrocarbon selective catalytic reduction of NOx using atmospheric pressure nonthermal plasma activation of a Ag/Al2O3 catalyst. ACS Catal. 2014, 4, 666-673.

Nano Research
Pages 2024-2032
Cite this article:
Ma H, Wei Y, Wang J, et al. Freestanding macroscopic metal-oxide nanotube films derived from carbon nanotube film templates. Nano Research, 2015, 8(6): 2024-2032. https://doi.org/10.1007/s12274-015-0714-1

673

Views

6

Crossref

N/A

Web of Science

5

Scopus

1

CSCD

Altmetrics

Received: 13 November 2014
Revised: 22 December 2014
Accepted: 03 January 2015
Published: 17 April 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return