AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Materialization of strained CVD-graphene using thermal mismatch

Seung-Mo Lee1,2( )Sang-Min Kim1,3Min Young Na4Hye Jung Chang5Kwang-Seop Kim1Hyunung Yu6Hak-Joo Lee1Jae-Hyun Kim1,2
Nano-Convergence Mechanical Systems Research Division Korea Institute of Machinery & Materials (KIMM) 156 Gajungbuk-roYuseong-gu, Daejeon305-343Republic of Korea
Nano MechatronicsUniversity of Science and Technology (UST)217 Gajeong-roYuseong-gu, Daejeon305-333Republic of Korea
Graduate School of Energy Environment Water and SustainabilityKorea Advanced Institute of Science & Technology (KAIST)Daejeon305-701Republic of Korea
GDepartment of Materials Science and EngineeringYonsei University50 Yonsei-roSeodaemun-gu, Seoul120-749Republic of Korea
Advanced Analysis CenterKorea Institute of Science and Technology (KIST)Hwarang-ro 14-gil 5Seongbuk-gu, Seoul130-791Republic of Korea
Korea Research Institute of Standards and Science (KRISS)Center267 Gajeong-roYuseong-gu, Daejeon305-343Republic of Korea
Show Author Information

Graphical Abstract

Abstract

Theoretical physics foretells that "strain engineering" of graphene could hold the key to finding treasures still hidden in two-dimensional (2D) condensed matter physics and commercializing graphene-based devices. However, to produce strained graphene in large quantities is not an easy task by any means. Here, we demonstrate that thermal annealing of graphene placed on various substrates could be a surprisingly simple method for preparing strained graphene with a large area. We found that enhanced graphene-substrate interfacial adhesion plays a critical role in developing strained graphene. Creative device architectures that consider the thermal mismatch between graphene and the target substrate could enable the resulting strain to be intentionally tailored. We believe that our proposed method could suggest a shortcut to realization of graphene straintronics.

Electronic Supplementary Material

Download File(s)
12274_2015_719_MOESM1_ESM.pdf (3 MB)

References

1

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530-1534.

2

Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192-200.

3

Maiti, C. K.; Armstrong, G. A. Applications of Silicon Germanium Heterostructure Devices; Institute of Physics Publishing (IOP): London, 2002.

4

Thompson, S. E.; Armstrong, M.; Auth, C.; Cea, S.; Chau, R.; Glass, G.; Hoffman, T.; Klaus, J.; Ma, Z. Y.; McIntyre, B.; et al. A logic nanotechnology featuring strained-silicon. IEEE Electron Dev. Lett. 2004, 24, 191-193.

5
Maiti, C. K.; Maiti, T. K. Strain-Engineered MOSFETs; CRC Press: U. S. A., 2012.https://doi.org/10.1201/b13014
6

Pereira, V. M.; Castro Neto, A. H.; Peres, N. M. R. Tight- binding approach to uniaxial strain in graphene. Phys. Rev. B 2009, 80, 045401.

7

Ribeiro, R. M.; Pereira, V. M.; Peres, N. M. R.; Briddon, P. R.; Castro Neto, A. H. Strained graphene: Tight-binding and density functional calculations. New J. Phys. 2009, 11, 115002.

8

Pereira, V. M.; Castro Neto, A. H. Strain engineering of graphene's electronic structure. Phys. Rev. Lett. 2009, 103, 046801.

9

Cocco, G.; Cadelano, E.; Colombo, L. Gap opening in graphene by shear strain. Phys. Rev. B 2010, 81, 241412.

10

Choi, S. -M.; Jhi, S. -H.; Son, Y. -W. Effects of strain on electronic properties of graphene. Phys. Rev. B 2010, 81, 081407.

11

Li, Y.; Jiang, X. W.; Liu, Z. F.; Liu, Z. R. Strain effects in graphene and graphene nanoribbons: The underlying mechanism. Nano Res. 2010, 3, 545-556.

12

Lee, J. -K.; Yamazaki, S.; Yun, H.; Park, J.; Kennedy, G. P.; Kim, G. Pietzsch, O.; Wiesendanger, R.; Lee, S.; Hong, S.; et al. Modification of electrical properties of graphene by substrate-induced nanomodulation. Nano Lett. 2013, 13, 3494-3500.

13

Chen, J; Walther, J. H.; Koumoutsakos, P. Strain engineering of Kapitza resistance in few-layer graphene. Nano Lett. 2014, 14, 819-825.

14

Guinea, F.; Katsnelson, M. I.; Geim, A. K. Energy gaps and a zero-field quantum hall effect in graphene by strain engineering. Nat. Phys. 2009, 6, 30-33.

15

Levy, N.; Burke, S. A.; Meaker, K. L.; Panlasigui, M.; Zettl, A.; Guinea, F.; Neto, A. H. C.; Crommie, M. F. Strain- induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 2010, 329, 544-547.

16

Li, X.; Zhang, R. J.; Yu, W. J.; Wang, K. L.; Wei, J. Q.; Wu, D. H.; Cao, A. Y.; Li, Z. H.; Cheng, Y.; Zheng, Q. S.; et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep. 2012, 2, 870.

17

Bao, W. Z.; Miao, F.; Chen, Z.; Zhang, H.; Jang, W.; Dames, C.; Lau, C. N. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat. Nanotechnol. 2009, 4, 562-566.

18

Meng, L.; Su, Y.; Geng, D. C.; Yu, G.; Liu, Y. Q.; Dou, R. -F.; Nie, J. -C.; He, L. Hierarchy of graphene wrinkles induced by thermal strain engineering. Appl. Phys. Lett. 2013, 103, 251610.

19

Bai, K. -K.; Zhou, Y.; Zheng, H.; Meng, L.; Peng, H. L.; Liu, Z. F.; Nie, J. -C.; He, L. Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer. Phys. Rev. Lett. 2014, 113, 086102.

20

Tapasztó, L.; Dumitrică, T. Kim, S. J.; Nemes-Incze, P. Hwang, C.; Biró, L. P. Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene. Nat. Phys. 2012, 8, 739-742.

21

Shioya, H.; Craciun, M. F.; Russo, S.; Yamamoto, M.; Tarucha, S. Straining graphene using thin film shrinkage methods. Nano Lett. 2014, 14, 1158-1163.

22

Yoon, D; Son, Y. -W.; Cheong, H. Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett. 2011, 11, 3227-3231.

23

Leterrier, Y. Durability of nanosized oxygen-barrier coatings on polymers. Prog. Mater. Sci. 2003, 48, 1-55.

24

Pirkle, A.; Chan, J.; Venugopal, A.; Hinojos, D.; Magnuson, C. W.; McDonnell, S.; Colombo, L.; Vogel, E. M.; Ruoff, R. S.; Wallace, R. M. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 2011, 99, 122108.

25

Kumar, K.; Kim, Y. -S.; Yang, E. -H. The influence of thermal annealing to remove polymeric residue on the electronic doping and morphological characteristics of graphene. Carbon 2013, 65, 35-45.

26

Lee, C.; Li, Q. Y.; Kalb, W.; Liu, X. -Z.; Berger, H.; Carpick, R. W.; Hone, J. Frictional characteristics of atomically thin sheets. Science 2010, 328, 76-80.

27

Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N.; et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433.

28

Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210-215.

29

Proctor, J. E.; Gregoryanz, E.; Novoselov, K. S.; Lotya, M.; Coleman, J. N.; Halsall, M. P. High-pressure Raman spectroscopy of graphene. Phys. Rev. B 2009, 80, 073408.

30

Zabel, J.; Nair, R. R.; Ott, A.; Georgiou, T.; Geim, A. K.; Novoselov, K. S.; Casiraghi, C. Raman spectroscopy of graphene and bilayer under biaxial strain: Bubbles and balloons. Nano Lett. 2012, 12, 617-621.

31

Jie, W. J.; Hui, Y. Y.; Zhang, Y.; Lau, S. P.; Hao, J. H. Effects of controllable biaxial strain on the Raman spectra of monolayer graphene prepared by chemical vapor deposition. Appl. Phys. Lett. 2013, 102, 223112.

32

Ferralis, N.; Maboudian, R.; Carraro, C. Evidence of structural strain in epitaxial graphene layers on 6H-SiC(0001). Phys. Rev. Lett. 2008, 101, 156801.

33

Mounet, N.; Marzari, N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B 2005, 71, 205214.

34

Ni, Z. H.; Wang, H. M.; Ma, Y.; Kasim, J.; Wu, Y. H.; Shen, Z. X. Tunable stress and controlled thickness modification in graphene by annealing. ACS Nano 2008, 2, 1033-1039.

35

Hong, J.; Park, M. K.; Lee, E. J.; Lee, D.; Hwang, D. K.; Ryu, S. Origin of new broad Raman D and G peaks in annealed graphene. Sci. Rep. 2013, 3, 2700.

36

Jansen, F.; Machonkin, M. A.; Palmieri, N.; Kuhman, D. Thermomechanical properties of amorphous silicon and nonstoichiometric silicon oxide films. J. Appl. Phys. 1987, 62, 4732.

37

Phung, T. M.; Johnson, D. C.; Antonelli, G. A. A detailed experimental and analytical study of the thermal expansion of dielectric thin films on Si by x-ray reflectivity. J. Appl. Phys. 2006, 100, 064317.

38

Singh, S. K.; Neek-Amal, M.; Costamagna, S.; Peeters, F. M. Thermomechanical properties of a single hexagonal boron nitride sheet. Phys. Rev. B 2013, 87, 184106.

39

Miller, D. C.; Foster, R. R.; Jen, S. -H.; Bertrand, J. A.; Cunningham, S. J.; Morris, A. S.; Lee, Y. C.; George, S. M.; Dunn, M. L. Thermo-mechanical properties of alumina films created using the atomic layer deposition technique. Sens. Actuators A-Phys. 2010, 164, 58-67.

40

Bikiaris, D. N.; Karayannidis, G. P. Thermomechanical analysis of chain-extended PET and PBT. J. Appl. Polym. Sci. 1996, 60, 55-61.

41

Ni, G. -X.; Yang, H. -Z.; Ji, W.; Baeck, S. -J.; Toh, C. -T.; Ahn, J. -H.; Pereira, V. M.; Özyilmaz, B. Tuning optical conductivity of large-scale CVD graphene by strain engineering. Adv. Mater. 2014, 26, 1081-1086.

42

Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y.; et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389-393.

43
Della Volpe, C.; Brugnara, M.; Maniglio, D.; Siboni, S.; Wangdu, T. About the possibility of experimentally measuring an equilibrium contact angle and its theoretical and practical consequences. In Contact Angle, Wettability and Adhesion (Volume 4). Mittal, K. L., Ed.; CRC press: U. S. A., 2006; pp 79-100.
Nano Research
Pages 2082-2091
Cite this article:
Lee S-M, Kim S-M, Na MY, et al. Materialization of strained CVD-graphene using thermal mismatch. Nano Research, 2015, 8(6): 2082-2091. https://doi.org/10.1007/s12274-015-0719-9

548

Views

11

Crossref

N/A

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 29 October 2014
Revised: 14 December 2014
Accepted: 07 January 2015
Published: 08 April 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return