AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hierarchical TiO2 photocatalysts with a one-dimensional heterojunction for improved photocatalytic activities

Yingjuan Xie1,2Xiao Zhang1,3Peijun Ma1,4Zhijiao Wu1Lingyu Piao1( )
CAS Key Laboratory for Standardization and Measurement for NanotechnologyNational Center for Nanoscience and TechnologyBeijing100190China
Department of chemistryUniversity of Chinese Academy of SciencesBeijing100049China
Institute of Optoelectronics TechnologyBeijing Jiaotong UniversityBeijing100044China
College of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029China
Show Author Information

Graphical Abstract

Abstract

Hierarchical TiO2 photocatalysts with a one-dimensional heterojunction were synthesized via a facile template-free hydrothermal method. The TiO2 photocatalysts were flower-like microspheres with a 3 μm diameter. The base structure of the flower-like microspheres was a uniform nanowire with a 10 nm diameter. Anatase films were evenly coated onto the surface of the rutile TiO2 nanowires to form a one-dimensional core-shell base structure. This kind of one-dimensional heterojunction is conducive to the separation of charge carriers. In addition, the hierarchical TiO2 microspheres possessed a good mesoporous structure with a high specific surface area of 260 m2/g. Thus, the light scattering and utilization efficiency were improved in this structure. The photocatalysts exhibited better performance in both photocatalytic oxidation and reduction reactions. Moreover, the novel TiO2 photocatalysts displayed excellent stability in these reactions. This kind of hierarchical TiO2 structure has never been reported in the literature. The hierarchical structure and one-dimensional heterojunction were vital to the increase in quantum efficiency. Therefore, these hierarchical TiO2 photocatalysts have potential applications in the environmental and energy fields, such as in photocatalytic degradation, hydrogen production, Li-ion batteries, and dye-sensitized solar cells.

Electronic Supplementary Material

Download File(s)
12274_2015_720_MOESM1_ESM.pdf (1.5 MB)

References

1

Fujishima, A.; Zhang, X. T.; Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515-582.

2

Chen, X. B.; Mao, S. S. Synthesis of titanium dioxide (TiO2) nanomaterials. J. Nanosci. Nanotechno. 2006, 6, 906-925.

3

Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials synthesis properties modifications and applications. Chem. Rev. 2007, 107, 2891-2959.

4

Xiong, Z. G.; Zhao, X. S. Nitrogen-doped titanate-anatase core-shell nanobelts with exposed {101} anatase facets and enhanced visible light photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 5754-5757.

5

Zuo, F.; Bozhilov, K.; Dillon, R. J.; Wang, L.; Smith, P.; Zhao, X.; Bardeen, C.; Feng, P. Y. Active facets on titanium(Ⅲ)-doped TiO2: An effective strategy to improve the visible-light photocatalytic activity. Angew. Chem. Int. Ed. 2012, 51, 6223-6226.

6

Hu, Y. H. A highly efficient photocatalyst-hydrogenated black TiO2 for the photocatalytic splitting of water. Angew. Chem. Int. Ed. 2012, 51, 12410-12412.

7

Yang, L. J.; Leung, W. W. -F. Electrospun TiO2 nanorods with carbon nanotubes for efficient electron collection in dye- sensitized solar cells. Adv. Mater. 2013, 25, 1792-1795.

8

Wang, Z. Y.; Lou, X. W. TiO2 nanocages: Fast synthesis, interior functionalization and improved lithium storage properties. Adv. Mater. 2012, 24, 4124-4129.

9

Kamat, P. V. TiO2 nanostructures: Recent physical chemistry advances. J. Phys. Chem. C 2012, 116, 11849-11851.

10

Li, J. -G.; Ishigaki, T.; Sun, X. D. Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: Phase-selective synthesis and physicochemical properties. J. Phys. Chem. C 2007, 111, 4969-4976.

11

Holmberg, J. P.; Johnson, A. -C.; Bergenholtz, J.; Abbas, Z.; Ahlberg, E. Near room temperature synthesis of monodisperse TiO2 nanoparticles: Growth mechanism. J. Phys. Chem. C 2013, 117, 5453-5461.

12

Nonoyama, T.; Kinoshita, T.; Higuchi, M.; Nagata, K.; Tanaka, M.; Sato, K.; Kato, K. TiO2 synthesis inspired by biomineralization: Control of morphology, crystal phase, and light-use efficiency in a single process. J. Am. Chem. Soc. 2012, 134, 8841-8847.

13

Wu, C. Y.; Yue, Y. H.; Deng, X. Y.; Hua, W. M.; Gao, Z. Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations. Catal. Today 2004, 93-95, 863-869.

14

Zachariah, A.; Baiju, K. V.; Shukla, S.; Deepa, K. S.; James, J.; Warrier, K. G. K. Synergistic effect in photocatalysis as observed for mixed-phase nanocrystalline titania processed via sol-gel solvent mixing and calcination. J. Phys. Chem. C 2008, 112, 11345-11356.

15

Liu, Z. Y.; Zhang X. T.; Nishimoto, S.; Jin, M.; Tryk, D. A.; Murakami, T.; Fujishima, A. Anatase TiO2 nanoparticles on rutile TiO2 nanorods: A heterogeneous nanostructure via layer-by-layer assembly. Langmuir 2007, 23, 10916-10919.

16

Su, R.; Bechstein, R.; So, L.; Vang, R. T.; Sillassen, M.; Esbjornsson, B.; Palmqvist, A.; Besenbacher, F. How the anatase-to-rutile ratio influences the photoreactivity of TiO2. J. Phys. Chem. C 2011, 115, 24287-24292.

17

van der Meulen, T.; Mattson, A.; Österlund, L. A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase-rutile TiO2 nanoparticles: Role of surface intermediates. J. Catal. 2007, 251, 131-144.

18

Su, W. G.; Zhang, J.; Feng, Z. C.; Chen, T.; Ying, P. L.; Li, C. Surface phases of TiO2 nanoparticles studied by UV Raman spectroscopy and FT-IR spectroscopy. J. Phys. Chem. C 2008, 112, 7710-7716.

19

Zhang, J.; Xu, Q.; Feng, Z. C.; Li, M. J.; Li, C. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem. Int. Ed. 2008, 47, 1766- 1769.

20

Wu, H. B.; Hng, H. H.; Lou, X. W. Direct synthesis of anatase TiO2 nanowires with enhanced photocatalytic activity. Adv. Mater. 2012, 24, 2567-2571.

21

Feng, X. J.; Zhai, J.; Jiang, L. The fabrication and switchable super hydrophobicity of TiO2 nanorod films. Angew. Chem. Int. Ed. 2005, 44, 5115-5118.

22

Zhao, B.; Chen, F.; Huang, Q. W.; Zhang, J. L. Brookite TiO2 nanoflowers. Chem. Commun. 2009, 34, 5115-5117.

23

Sun, Z. Q.; Kim, J. H.; Zhao, Y.; Bijarbooneh, F.; Malgras, V.; Lee, Y.; Kang, Y. M.; Dou, S. X. Rational design of 3D dendritic TiO2 nanostructures with favorable architectures. J. Am. Chem. Soc. 2011, 133, 19314-19317.

24

Tang, Y. X.; Wee, P. X.; Lai, Y. K.; Wang, X. P.; Gong, D. G.; Kanhere, P. D.; Lim, T. -T.; Dong, Z. L.; Chen, Z. Hierarchical TiO2 nanoflakes and nanoparticles hybrid structure for improved photocatalytic activity. J. Phys. Chem. C 2012, 116, 2772-2780.

25

Ye, M. D.; Liu, H. -Y.; Lin, C. J.; Lin, Z. Q. Hierarchical rutile TiO2 flower cluster-based high efficiency dye-sensitized solar cells via direct hydrothermal growth on conducting substrates. Small 2013, 9, 312-321.

26

Bian, Z. F.; Zhu, J.; Wang, J. G.; Xiao, S. X.; Nuckolls, C.; Li, H. X. Multitemplates for the hierarchical synthesis of diverse inorganic materials. J. Am. Chem. Soc. 2012, 134, 2325-2331.

27

Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D. Y.; Madhavi, S.; Boey, F. Y. C.; Archer, L. A.; Lou, X. W. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J. Am. Chem. Soc. 2010, 132, 6124-6130.

28

Wang, W.; Ni, Y.; Lu, C. H.; Xu, Z. Z. Direct solvethermal growth of hierarchical porous TiO2 nanosheets with high photocatalytic activity. Mater. Lett. 2013, 111, 161-164.

29

Cheng, P. F.; Du, S. S.; Cai, Y. X.; Liu, F. M.; Sun, P.; Zheng, J.; Lu, G. Y. Tripartite layered photoanode from hierarchical anatase TiO2 urchin-like spheres and P25: A candidate for enhanced efficiency dye sensitized solar cells. J. Phys. Chem. C 2013, 117, 24150-24156.

30

Yang, M. -H.; Chen, P. -C.; Tsai, M. -C.; Chen, T. -T.; Chang, I. -C.; Chiu, H. -T.; Lee, C. -Y. Anatase and brookite TiO2 with various morphologies and their proposed building block. Crystengcomm 2014, 16, 441-447.

31

Tan, X. H.; Qiang, P. F.; Zhang, D. D.; Cai, X.; Tan, S. Z.; Liu, P. Y.; Mai, W. J. Three-level hierarchical TiO2 nanostructure based high efficiency dye-sensitized solar cells. Crystengcomm 2014, 16, 1020-1025.

32

Liu, M.; Piao, L. Y.; Wang, W. J. Fabrication and characteristics of three-dimensional flower-like titanate nanostructures. J. Nanosci. Nanotechno. Lett. 2010, 10, 7469-7472.

33

Ge, M.; Li, J. W.; Liu, L.; Zhou, Z. Template-free synthesis and photocatalytic application of rutile TiO2 hierarchical nanostructures. Ind. Eng. Chem. Res. 2011, 50, 6681-6687.

34

Bai, H. W.; Liu, Z. Y.; Sun, D. D. Hierarchically multifunctional TiO2 nano-thorn membrane for water purification. Chem. Commun. 2010, 46, 6542-6544.

35

Sinha, A. K.; Jana, S.; Pande, S.; Sarkar, S.; Pradhan, M.; Basu, M.; Saha, S.; Pal, A.; Pal, T. New hydrothermal process for hierarchical TiO2 nanostructures. Crystengcomm 2009, 11, 1210-1212.

36

Wu, D. P.; Zhu, F.; Li, J. M.; Dong, H.; Li, Q.; Jiang, K.; Xu, D. S. Monodisperse TiO2 hierarchical hollow spheres assembled by nanospindles for dye-sensitized solar cells. J. Mater. Chem. 2012, 22, 11665-11671.

37

Kondalkar, V. V.; Mali, S. S.; Mane, R. M.; Dandge, P. B.; Choudhury, S.; Hong, C. K.; Patil, P. S.; Patil, S. R.; Kim, J. H.; Bhosale, P. N. Photoelectrocatalysis of cefotaxime using nanostructured TiO2 photoanode: Identification of the degradation products and determination of the toxicity level. Ind. Eng. Chem. Res. 2014, 53, 18152-18162.

38

Patil, P. B.; Mali, S. S.; Kondalkar, V. V.; Pawar, N. B.; Khot, K. V.; Hong, C. K.; Patil, P. S.; Bhosale, P. N. Single step hydrothermal synthesis of hierarchical TiO2 microflowers with radially assembled nanorods for enhanced photovoltaic performance. RSC Adv. 2014, 4, 47278-47286.

39

Ong, W. -J.; Tan, L. -L.; Chai, S. -P.; Yong S. -T.; Mohamed, A. R. Self-assembly of nitrogen-doped TiO2 with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane. Nano Res. 2014, 7, 1528-1547.

40

Zhou, W.; Li, T.; Wang, J. Q.; Qu, Y.; Pan, K.; Xie, Y.; Tian, G. H.; Wang, L.; Ren, Z. Y.; Jiang, B. J.; et al. Composites of small Ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance. Nano Res. 2014, 7, 731-742.

41

Song, H.; Jo, K.; Jung, B. Y.; Jung, G. Y. Fabrication of periodically aligned vertical single-crystalline anatase TiO2 nanotubes with perfect hexagonal open-ends using chemical capping materials. Nano Res. 2014, 7, 104-109.

42

Shi, F. Z.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Preparation of core/shell structured rutile/anatase photocatalyst via vapor phase hydrolysis and its photocatalytic degradation of phenol and methylene blue. J. Am. Ceram. Soc. 2012, 95, 1927-1932.

43

Ye, M. D.; Zheng, D. J; Lv, M. Q.; Chen, C.; Lin, C. J.; Lin, Z. Q. Hierarchically structured nanotubes for highly efficient dye-sensitized solar cells. Adv. Mater. 2013, 25, 3039-3044.

44

Sun, C. H.; Wang, N. X.; Zhou, S. Y.; Hu, X. J.; Zhou, S. Y.; Chen, P. Preparation of self-supporting hierarchical nanostructured anatase/rutile composite TiO2 film. Chem. Commun. 2008, 28, 3293-3295.

45

Hsu, Y. -C.; Lin, H. -C.; Chen, C. -H.; Liao, Y. -T.; Yang, C. -M. Nonaqueous seeded growth of flower-like mixed-phase titania nanostructures for photocatalytic applications. J. Solid State Chem. 2010, 183, 1917-1924.

46

Yu, X.; Xu, H. M.; Xin, L.; Wang, X. Y.; Liu, Y.; Zhou, X.; Li, B. J.; Zhao, W. X.; Shen, H. Synergistic assembly of nanoparticle aggregates and texture nanosheets into hierarchical TiO2 core-shell structures for enhanced light harvesting in dye-sensitized solar cells. J. Mater. Chem. A 2013, 1, 6175-6182.

47

Xu, F.; Zhang, X. Y.; Wu, Y.; Wu, D. P.; Gao, Z. Y.; Jiang, K. Facile synthesis of TiO2 hierarchical microspheres assembled by ultrathin nanosheets for dye-sensitized solar cells. J. Alloy. Compd. 2013, 574, 227-232.

48

Cong, Y.; Zhang, J. L.; Chen, F.; Anpo, M. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C 2007, 111, 6976-6982.

49

Shi, J. Y.; Chen, J.; Feng, Z. C.; Chen, T.; Lian, Y. X.; Wang, X. L.; Li, C. Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture. J. Phys. Chem. C 2007, 111, 693-699.

50

Zhang, J. L.; Hu, Y.; Matsuoka, M.; Yamashita, H.; Minagawa, M.; Hidaka, H.; Anpo, M. Relationship between the local structures of titanium oxide photocatalysts and their reactivities in the decomposition of NO. J. Phys. Chem. B 2001, 105, 8395-8398.

51

Nair, R. G.; Paul, S.; Samdarshi, S. K. High UV/visible light activity of mixed phase titania: A generic mechanism. Sol. Energ. Mat. Sol. C 2011, 95, 1901-1907.

52

Xie, Y. J.; Wu, Z. J.; Wu, Q.; Liu, M.; Piao, L. Y. Effect of different base structures on the performance of the hierarchical TiO2 photocatalysts. Catal. Today 2014, 225, 74-79.

53

Bao, N.; Li, Y.; Wei, Z. T.; Yin, G. B.; Niu, J. J. Adsorption of dyes on hierarchical mesoporous TiO2 fibers and its enhanced photocatalytic properties. J. Phys. Chem. C 2011, 115, 5708-5719.

Nano Research
Pages 2092-2101
Cite this article:
Xie Y, Zhang X, Ma P, et al. Hierarchical TiO2 photocatalysts with a one-dimensional heterojunction for improved photocatalytic activities. Nano Research, 2015, 8(6): 2092-2101. https://doi.org/10.1007/s12274-015-0720-3

700

Views

39

Crossref

N/A

Web of Science

43

Scopus

8

CSCD

Altmetrics

Received: 12 November 2014
Revised: 07 January 2015
Accepted: 08 January 2015
Published: 19 May 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return