AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-performance rigid and flexible ultraviolet photodetectors with single-crystalline ZnGa2O4 nanowires

Zheng Lou§Ludong Li§Guozhen Shen( )
State Key Laboratory for Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China

§These authors contribute equally to this work.

Show Author Information

Graphical Abstract

Abstract

ZnGa2O4 nanowires (NWs) as a ternary oxide semiconductor were successfully synthesized by a simple vapor transport method for application as highperformance ultraviolet (UV) photodetectors. A single-nanowire UV photodetector fabricated on a rigid silicon substrate exhibited excellent spectral responsivity (3, 174 A/W) and high external quantum efficiency (1.1 × 106%) at 350 nm UV light illumination. A flexible single-nanowire photodetector on a polyethylene terephthalate (PET) substrate was also fabricated and showed similar properties. The as-fabricated flexible photodetector exhibited stable electrical properties and mechanical flexibility under different bending curvatures over many cycles, indicating its potential application in future flexible photoelectronic devices.

References

1

Fuhrer, M. S.; Nygard, J.; Shih, L.; Forero, M.; Yoon, Y. G.; Mazzoni, M. S. C.; Choi, H. J.; Ihm, J.; Louie, S. G.; Zett, A.; et al. Crossed nanotube junctions. Science 2000, 288, 494-497.

2

Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. J. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622-625.

3

Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 2002, 295, 2425-2427.

4

Liu, Z.; Xu, J.; Chen, D.; Shen, G. Z. Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 2015, 44, 161-192.

5

Wang, Z. R.; Wang, H.; Liu, B.; Qiu, W. Z.; Zhang, J.; Ran, S. H.; Huang, H. T.; Xu, J.; Han, H. W.; Chen, D.; et al. Transferable and flexible nanorod-assembled TiO2 cloths for dye-sensitized solar cells, photodetectors, and photocatalysts. ACS Nano 2011, 5, 8412-8419.

6

Wang, L. L.; Deng, J. N.; Lou, Z.; Zhang, T. Cross-linked p-type Co3O4 octahedron nanoparticles in 1 D n-type TiO2 nanofibers for high-performance sensing devices. J. Mater. Chem. A 2014, 2, 10022-10028.

7

Liu, B.; Zhang, J.; Wang, X. F.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005-3011.

8

Chen, Z.; Augustyn, V.; Wen, J.; Zhang, Y. W.; Shen, M. Q.; Dunn, B.; Lu, Y. F. High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv. Mater. 2011, 23, 791-795.

9

Liu, Z.; Luo, T.; Liang, B.; Chen, G.; Yu, G.; Xie, X. M.; Chen, D.; Shen, G. Z. High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res. 2013, 6, 775-783.

10

Kobayashi, H.; Koyama, Y.; Barrett, T.; Hama, Y.; Regino, C. A. S.; Shin, I. S.; Jang, B. S.; Le, N.; Paik, C. H.; Choyke, P. L.; et al. Multimodal nanoprobes for radionuclide and five- Color near-infrared optical lymphatic imaging. ACS Nano 2007, 1, 258-264.

11

Fan, Z. Y.; Ho, J. C.; Jacobson, Z. A.; Razavi, H.; Javey, A. Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 11066-11070.

12

Chen, G.; Liu, Z.; Liang, B.; Yu, G.; Xie, Z.; Huang, H. T.; Liu, B.; Wang, X. F.; Chen, D.; Zhu, M. Q.; et al. Single- crystalline p-type Zn3As2 nanowires for field-effect transistors and visible-light photodetectors on rigid and flexible substrates. Adv. Funct. Mater. 2013, 21, 2681-2690.

13

Kind, H.; Yan, H. Q.; Messer, B.; Law, M.; Yang, P. D. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14, 158-160.

14

Sun, K.; Jing, Y.; Park, N.; Li, C.; Bando, Y.; Wang, D. L. Solution synthesis of large-scale, high-sensitivity ZnO/Si hierarchical nanoheterostructure photodetectors. J. Am. Chem. Soc. 2010, 132, 15465-15467.

15

Wang, X. F.; Liu, B.; Liu, R.; Wang, Q. F.; Hou, X. J.; Chen, D.; Wang, R. M.; Shen, G. Z. Fiber-based flexible all-solid- state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem. Int. Ed. 2014, 53, 1849-1853.

16

Liu, X.; Gu, L. L.; Zhang, Q. P.; Wu, J. Y.; Long, Y. Z.; Fan, Z. Y. All printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Comm. 2014, 5, 4007.

17

Pan, X. F.; Liu, X.; Bermark, A.; Fan, Z. Y. Self-gating effect induced large performance improvement of ZnO nanocomb gas sensors. ACS Nano 2013, 7, 9318-9324.

18

Shen, G. Z.; Xu, J.; Wang, X. F.; Huang, H. T.; Chen, D. Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications. Adv. Mater. 2011, 23, 771-775.

19

Cheng, C. W.; Fan, H. J. Branched nanowires: Synthesis and energy applications. Nano Today 2012, 7, 327-343.

20

Yan, C. Y.; Lee, P. S. Recent progresses in improving nanowire photodetector performances. Adv. Mater. 2012, 4, 241-253.

21

Li, C.; Bando, Y.; Liao, M. Y.; Koide, Y.; Golberg, D. Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire. Appl. Phys. Lett. 2010, 97, 161102.

22

Zhang, Y. J.; Wang, J. J.; Zhu, H. F.; Li. H.; Jiang. L.; Shu, C. Y.; Hu, W. P.; Wang, C. R. High performance ultraviolet photodetectors based on an individual Zn2SnO4 single crystalline nanowire. J. Mater. Chem. 2010, 20, 9858-9860.

23

Liu, Z.; Liang, B.; Chen, G.; Yu, G.; Xie, Z.; Gao, L.; Chen, D.; Shen, G. Z. Contact printing of aligned ternary oxide nanowire arrays for multi-channel field-effect transistors and photodetectors. J. Mater. Chem. C 2013, 1, 131-137.

24

Yan, C. Y.; Singh, N.; Lee, P. S. Wide-bandgap Zn2GeO4 nanowire networks as efficient ultraviolet photodetectors with fast response and recovery time. Appl. Phys. Lett. 2010, 96, 053108.

25

Hsieh, I. J.; Chu, K. T.; Yu, C. F.; Feng, M. S. Cathodoluminescent characteristics of ZnGa2O4 phosphor grown by radio frequency magnetron sputtering. J. Appl. Phys. 1994, 76, 3735-3739.

26

Shea, L. E.; Datta, R. K.; Brown, J. J. Photoluminescence of Mn2+-activated ZnGa2O4. J. Electrochem. Soc. 1994, 141, 1950-1954.

27

Jeong, I. K.; Park, H. L.; Mho, S. I. Photoluminescence of ZnGa2O4 mixed with InGaZnO4. Solid State Commun. 1998, 108, 823-826.

28

Zou, L.; Xiang, X.; Wei, M.; Li, F.; Evans, D. G. Single- crystalline ZnGa2O4 spinel phosphor via a single-source inorganic precursor route. Inorg. Chem. 2008, 47, 1361-1369.

29

Chang, K. W.; Wu, J. J. Formation of well-aligned ZnGa2O4 nanowires from Ga2O3/ZnO core-shell nanowires via a Ga2O3/ZnGa2O4 epitaxial relationship. J. Phys. Chem. B 2005, 109, 13572-13577.

30

Lu, M. Y.; Zhou, X.; Chiu, C. -Y.; Crawford, S.; Gradecak, S. From GaN to ZnGa2O4 through a low-temperature process: Nanotube and heterostructure arrays. ACS Appl. Mater. Interfaces 2014, 6, 882-887.

31

Yan, S. C.; Ouyang, S. X.; Gao, J.; Yang, M.; Feng, J. Y.; Fan, X. X.; Wan, L. J.; Li, Z. S.; Ye, J. H.; Zhou, Y.; et al. A room-temperature reactive-template route to mesoporous ZnGa2O4 with improved photocatalytic activity in reduction of CO2. Angew. Chem. Int. Ed. 2010, 49, 6400-6404.

32

Li, L.; Wu, P. C.; Fang, X. S.; Zhai, T. Y.; Dai, L.; Liao, M. Y.; Koide, Y.; Wang, H. Q.; Bando, Y.; Golberg, D. Single- crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors. Adv. Mater. 2010, 22, 3161-3165.

33

Wu, P. C.; Dai, Y.; Ye, Y.; Yin, Y.; Dai, L. Fast-speed and high-gain photodetectors of individual single crystalline Zn3P2 nanowires. J. Mater. Chem. 2011, 21, 2563-2567.

34

Chen, M. -W.; Chen, C. -Y.; Lien, D. -H.; Ding, Y.; He, J. -H. Photoconductive enhancement of single ZnO NW through localized schottky effects. Opt. Express. 2010, 18, 14836- 14841.

35

Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 137-143.

36

Chen, G.; Liang, B.; Liu, X.; Liu, Z.; Gang, Y.; Xie, X. M.; Luo, T.; Chen, D.; Zhu, M. Q.; Shen, G. Z.; Fan, Z. Y. High-performance hybrid phenyl-C61-butyric acid methyl ester/Cd3P2 nanowire ultraviolet-visible-near infrared photodetectors. ACS Nano 2014, 8, 787-796.

37

Chen, M.; Hu, L. F.; Xu, J. X.; Liao, M. Y.; Wu, L. M.; Fang, X. S. ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector. Small 2011, 7, 2449-2453.

Nano Research
Pages 2162-2169
Cite this article:
Lou Z, Li L, Shen G. High-performance rigid and flexible ultraviolet photodetectors with single-crystalline ZnGa2O4 nanowires. Nano Research, 2015, 8(7): 2162-2169. https://doi.org/10.1007/s12274-015-0723-0

583

Views

88

Crossref

N/A

Web of Science

88

Scopus

8

CSCD

Altmetrics

Received: 02 December 2014
Revised: 05 January 2015
Accepted: 11 January 2015
Published: 19 May 2015
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2015
Return