AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Raman microscopy mapping for the purity assessment of chirality enriched carbon nanotube networks in thin-film transistors

Zhao Li( )Jianfu DingPaul FinnieJacques LefebvreFuyong ChengChristopher T. KingstonPatrick R. L. Malenfant( )
Security and Disruptive Technologies PortfolioNational Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6Canada
Show Author Information

Graphical Abstract

Abstract

With recent improvements in carbon nanotube separation methods, the accurate determination of residual metallic carbon nanotubes in a purified nanotube sample is important, particularly for those interested in using semiconducting single-walled carbon nanotubes (SWCNTs) in electronic device applications such as thin-film transistors (TFTs). This work demonstrates that Raman microscopy mapping is a powerful characterization tool for quantifying residual metallic carbon nanotubes present in highly enriched semiconducting nanotube networks. Raman mapping correlates well with absorption spectroscopy, yet it provides greater differentiation in purity. Electrical data from TFTs with channel lengths of 2.5 and 5 μm demonstrate the utility of the method. By comparing samples with nominal purities of 99.0% and 99.8%, a clear differentiation can be made when evaluating the current on/off ratio as a function of channel length, and thus the Raman mapping method provides a means to guide device fabrication by correlating SWCNT network density and purity with TFT channel scaling.

Electronic Supplementary Material

Download File(s)
12274_2015_725_MOESM1_ESM.pdf (4.9 MB)

References

1

Avouris, P. Molecular electronics with carbon nanotubes. Acc. Chem. Res. 2002, 35, 1026-1034.

2

De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535-539.

3

Noorden, R. V. The trials of new carbon. Nature 2011, 469, 14-16.

4

Zhang, H. L.; Wu, B.; Hu, W. P.; Liu, Y. Q. Separation and/or selective enrichment of single-walled carbon nanotubes based on their electronic properties. Chem. Soc. Rev. 2011, 40, 1324-1336.

5

Wang, C.; Takei, K.; Takahashi, T.; Javey, A. Carbon nanotube electronics-moving forward. Chem. Soc. Rev. 2013, 42, 2592-2609.

6

Lu, F. S.; Meziani, M. J.; Cao, L.; Sun, Y. P. Separated metallic and semiconducting single-walled carbon nanotubes: Opportunities in transparent electrodes and beyond. Langmuir 2011, 27, 4339-4350.

7

Liu, Z. F.; Jiao, L. Y.; Yao, Y. G.; Xian, X. J.; Zhang, J. Aligned, ultralong single-walled carbon nanotubes: From synthesis, sorting, to electronic devices. Adv. Mater. 2010, 22, 2285-2310.

8

Hu, L.; Hecht, D. S.; Grüner, G. Carbon Nanotube thin films: Fabrication, properties, and applications. Chem. Rev. 2010, 110, 5790-5844.

9

Park, S.; Vosguerichian, M.; Bao, Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 2013, 5, 1727-1752.

10

Rouhi, N.; Jain, D.; Burke, P. J. High-performance semiconducting nanotube inks: Progress and prospects. ACS Nano 2011, 5, 8471-8487.

11

Sun, D. M.; Liu, C.; Ren, W. C.; Cheng, H. M. A review of carbon nanotube- and graphene-based flexible thin-film transistors. Small 2013, 9, 1188-1205.

12

Mistry, K. S.; Larsen, B. A.; Blackburn, J. L. High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions. ACS Nano 2013, 7, 2231-2239.

13

Itkis, M. E.; Perea, D. E.; Jung, R.; Niyogi, S.; Haddon, R. C. Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 3439-3448.

14

Itkis, M. E.; Perea, D. E.; Niyogi, S.; Rickard, S. M.; Hamon, M. A.; Hu, H.; Zhao, B.; Haddon, R. C. Purity evaluation of as-prepared single-walled carbon nanotube soot by use of solution-phase near-IR spectroscopy. Nano Lett. 2003, 3, 309-314.

15

Gomulya, W.; Costanzo, G. D.; Figueiredo de Carvalho, E. J.; Bisri, S. Z.; Derenskyi, V.; Fritsch, M.; Fröhlich, N.; Allard, S.; Gordiichuk, P.; Herrmann, A.; et al. A. Semiconducting single-walled carbon nanotubes on demand by polymer wrapping. Adv. Mater. 2013, 25, 2948-2956.

16

Ding, J. F.; Li, Z.; Lefebvre, J.; Cheng, F. Y.; Dubey, G.; Zou, S.; Finnie, P.; Hrdina, A.; Scoles, L.; Lopinski, G.; et al. Enrichment of large-diameter semiconducting SWCNTs by polyfluorene extraction for high network density thin film transistors. Nanoscale 2014, 6, 2328-2339.

17

Tange, M.; Okazaki, T.; Iijima, S. Selective extraction of large- diameter single-wall carbon nanotubes with specific chiral indices by Poly (9, 9-dioctylfluorene-alt -benzothiadiazole). J. Am. Chem. Soc. 2011, 133, 11908-11911.

18

Naumov, A. V.; Ghosh, S.; Tsyboulski, D. A.; Bachilo, S. M. Weisman, R. B. Analyzing absorption backgrounds in single-walled carbon nanotube spectra. ACS Nano 2011, 5, 1639-1648.

19

LeMieux, M. C.; Roberts, M.; Barman, S.; Jin, Y. W.; Kim, J. M.; Bao, Z. Self-sorted, aligned nanotube networks for thin-film transistors. Science 2008, 321, 101-104.

20

Gao, M.; Zuo, J. M.; Twesten, R. D.; Petrov, I.; Nagahara, L. A.; Zhang, R. Structure determination of individual single- wall carbon nanotubes by nano area electron diffraction. Appl. Phys. Lett. 2003, 82, 2703-2705.

21

Qin, L. C.; Iijima, S.; Kataura, H.; Maniwa, Y.; Suzuki, S.; Achiba, Y. Helicity and packing of single-walled carbon nanotubes studied by electron nanodiffraction. Chem. Phys. Lett. 1997, 268, 101-106.

22

Wildöer, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.; Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998, 391, 59-62.

23

Lu, W.; Xiong, Y.; Hassanien, A.; Zhao, W.; Zheng, M.; Chen, L. A Scanning probe microscopy based assay for single-walled carbon nanotube metallicity. Nano Lett. 2009, 9, 1668-1672.

24

Vijayaraghavan, A.; Blatt, S.; Marquardt, C.; Dehm, S.; Wahi R. Hennrich, F.; Krupke, R. Imaging electronic structure of carbon nanotubes by voltage-contrast scanning electron microscopy. Nano Res. 2008, 1, 321-332.

25

Vijayaraghavan, A.; Hennrich, F.; Stürzl, N.; Engel, M.; Ganzhorn, M.; Oron-Carl, M.; Marquardt, C. W.; Dehm, S.; Lebedkin, S.; Kappes, M. M.; et al. Toward single-chirality carbon nanotube device arrays. ACS Nano 2010, 4, 2748- 2754.

26

Li, Y. Y.; Mann, D.; Rolandi, M.; Kim, W.; Ural, A.; Hung, S.; Javey, A.; Cao, J.; Wang, D. W.; Yenilmez, E.; et al. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett. 2004, 4, 317-321.

27

Park, H.; Afzali, A.; Han, S. -J.; Tulevski, G. S.; Franklin, A. D.; Tersoff, J.; Hannon, J. B.; Haensch, W. High-density integration of carbon nanotubes via chemical self-assembly. Nat. Nanotechnol. 2012, 7, 787-791.

28

Tulevski, G. S.; Franklin, A. D.; Afzali, A. High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography. ACS Nano 2013, 7, 2971-2976.

29

Naumov, A. V.; Kuznetsov, O. A.; Harutyunyan, A. R.; Green, A. A.; Hersam, M. C.; Resasco, D. E.; Nikolaev, P. N.; Weisman, R. B. Quantifying the semiconducting fraction in single-walled carbon nanotube samples through comparative atomic force and photoluminescence microscopies. Nano Lett. 2009, 9, 3203-3208.

30

Jorio, A.; Pimenta, M. A.; Souza Filho, A. G.; Saito, R.; Dresselhaus, G.; Dresselhaus. M. S. Characterizing carbon nanotube samples with resonance Raman scattering. New J. Phys. 2003, 5, 139.

31

Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47-99.

32

Saito, R.; Hofmann, M.; Dresselhaus, G.; Jorio, A.; Dresselhaus, M. S. Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 2011, 60, 413-550.

33

Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751-758.

34

Thomsen, C.; Reich, S. Raman scattering in carbon nanotubes. Top. Appl. Phys. 2007, 108, 115-232.

35

Kaminska, K.; Lefebvre, J.; Austing, D. G.; Finnie, P. Real- time global Raman imaging and optical manipulation of suspended carbon nanotubes. Phy. Rev. B 2006, 73, 235410.

36

Finnie, P.; Ding, J.; Li. Z.; Kingston, C. T. Assessment of the metallicity of single-wall carbon nanotube ensembles at high purities. J. Phys. Chem C 2014, 118, 30127-30138.

37

Dresselhaus, M. S.; Dresselhaus. G.; Jorio, A.; Souza Filho, A. G.; Pimenta, M. A.; Saito, R. Single nanotube Raman spectroscopy. Acc. Chem. Res. 2002, 35, 1070-1078.

38

Doorn, S. K.; Heller, D. A.; Barone, P. W.; Usrey, M. L.; Strano, M. S. Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution. Appl. Phys. A 2004, 78, 1147-1155.

39

Hennrich, F.; Krupke, R.; Lebedkin, S.; Arnold, K.; Fischer, R.; Resasco, D. E.; Kappes, M. M. Raman spectroscopy of individual single-walled carbon nanotubes from various sources. J. Phys. Chem. B 2005, 109, 10567-10573.

40

Samsonidze, G.; Chou, S. G.; Santos, A. P.; Brar, V. W.; Dresselhaus, G.; Dresselhaus, M. S.; Selbst, A.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; et al. Quantitative evaluation of the octadecylamine-assisted bulk separation of semiconducting and metallic single-wall carbon nanotubes by resonance Raman spectroscopy. Appl. Phys. Lett. 2004, 85, 1006-1008.

41

Paillet, M.; Michel, T.; Zahab, A.; Nakabayashi, D.; Jourdain, V.; Parret, R.; Meyer, J.; Sauvajol, J. L. Probing the structure of single-walled carbon nanotubes by resonant Raman scattering. Phys. Status Solidi B 2010, 247, 2762-2767.

42

Maultzsch, J.; Telg, H.; Reich, S.; Thomsen, C. Radial breathing mode of single-walled carbon nanotubes: optical transition energies and chiral-index assignment. Phys. Rev. B, 2005, 72, 205438.

43

Wu, J.; Xie, L.; Hong, G.; Lim, H. E.; Thendie, B.; Miyata, Y.; Shinohara, H.; Dai, H. Short channel field-effect transistors from highly enriched semiconducting carbon nanotubes. Nano Res. 2012, 5, 388-394.

44

Jungen, A.; Popov, V. N.; Stampfer, C.; Durrer, L.; Stoll, S.; Hierold, C. Raman intensity mapping of single-walled carbon nanotubes. Phys. Rev. B 2007, 75, 041405.

45

Jorio, A.; Santos, A. P.; Ribeiro, H. B.; Fantini, C.; Souza, M.; Vieira, J. P. M.; Furtado, C. A.; Jiang, J.; Saito, R.; Balzano, L.; Resasco, D. E.; Pimenta, M. A. Quantifying carbon- nanotube species with resonance Raman scattering. Phys. Rev. B 2005, 72, 075207.

46

Chattopadhyay, D.; Galeska, I.; Papadimitrakopoulos, F. A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. J. Am. Chem. Soc. 2003, 125, 3370-3375.

47

Weisman, R. B.; Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett. 2003, 3, 1235-1238.

48

Duarte, A. S.; Rehbinder, J.; Correia, R. R. B.; Buckup, T.; Motzkus, M. Mapping impurity of dingle-walled carbon nanotubes in bulk samples with multiplex coherent anti- Stokes Raman microscopy. Nano Lett. 2013, 13, 697-702.

49

Pimenta, M. A.; Marucci, A.; Empedocles, S. A.; Bawendi, M. G.; Hanlon, E. B.; Rao, A. M.; Eklund, P. C.; Smalley, R. E.; Dresselhaus, G.; Dresselhaus, M. S. Raman modes of metallic carbon nanotubes. Phys. Rev. B 1998, 58, R16016- R16019.

50

Jorio, A.; Souza Filho, A. G.; Dresselhaus, G.; Dresselhaus, M. S.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; Pimenta, M. A.; Hafner, J. H.; Lieber, C. M.; et al. G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Phys. Rev. B 2002, 65, 155412.

51

Hároz, E. H.; Duque, J. G.; Rice, W. D.; Densmore, C. G.; Kono, J.; Doorn, S. K. Resonant Raman spectroscopy of armchair carbon nanotubes: absence of broad G- feature. Phys. Rev. B 2011, 84, 121403.

52

Tulevski, G. S.; Franklin, A. D.; Frank, D.; Lobez, J. M.; Cao, Q.; Park, H.; Afzali, A.; Han, S. J.; Hannon, J. B.; Haensch, W. Toward High-performance digital logic technology with carbon nanotubes. ACS Nano, 2014, 8, 8730-8745.

53

Brady, G. J.; Joo, Y.; Roy, S. S.; Gopalan, P.; Arnold, M. S. High performance transistors via aligned polyfluorene-sorted carbon nanotubes. Appl. Phys. Lett. 2014, 104, 083107.

54

Yao, J.; Yan, H.; Lieber, C. M. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 2013, 8, 329-335.

55

Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single- walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230-236.

56

Nougaret, L; Happy, H.; Dambrine, G.; Derycke, V.; Bourgoin, J. P.; Green, A. A; Hersam, M. C. 80 GHz field-effect transistors produced using high purity semiconducting single walled carbon nanotubes. Appl. Phys. Lett. 2009, 94, 243505.

57

Lau, P. H.; Takei, K.; Wang, C.; Ju, Y.; Kim, J.; Yu, Z.; Takahashi, T.; Cho, G.; Javey, A. Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. Nano Lett. 2013, 13, 3864-3869.

58

Liu, Z.; Zhao, J. W.; Xu, W. Y.; Qian, L.; Nie, S. H.; Cui, Z. Effect of surface wettability properties on the electrical properties of printed carbon nanotube thin-film transistors on SiO2/Si Substrates. ACS Appl. Mater. Interfaces 2014, 6, 9997-10004.

59

Kim, B; Jang, S; Geier, M. L.; Prabhumirashi, P. L.; Hersam, M. C.; Dodabalapur, A. High-speed, inkjet-printed carbon nanotube/zinc tin oxide hybrid complementary ring oscillators. Nano Lett. 2014, 14, 3683-3687.

60

Chen, H. T.; Cao, Y.; Zhang, J. L.; Zhou, C. W. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 2014, 5, 4097.

61

Chen, P.; Fu, Y.; Aminirad, R.; Wang, C.; Zhang, J.; Wang, K.; Galatsis, K.; Zhou, C. W. Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control. Nano Lett. 2011, 11, 5301-5308.

62

Xu, W. Y.; Zhao, J. W.; Qian, L.; Han, X. Y.; Wu, L. Z.; Wu, W. C.; Song, M. S.; Zhou, L.; Su, W. M.; Wang, C.; et al. Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode (OLED) Nanoscale, 2014, 6, 1589-1595.

63

Jung, M.; Kim, J.; Koo, H.; Lee, W.; Subramanian, V.; Cho, G. Roll-to-Roll gravure with nanomaterials for printing smart packaging. J. Nanosci. Nanotechnol. 2014, 14, 1303-1317.

64

Jung, M. H.; Kim, J.; Noh, J.; Lim, N.; Lim, C.; Lee, G.; Kim, J.; Kang, H.; Jung, K.; Leonard, A.; et al. All-printed and roll-to-roll-printable 13.56 MHz-operated 1-bit RF tag on plastic foils. IEEE Trans. Elec. 2010, 57, 571-580.

65

Kiriya, D.; Chen, K.; Ota, H.; Lin, Y. J.; Zhao, P. D.; Yu, Z. B.; Ha, T. -J.; Javey, A. Design of surfactant-substrate interactions for roll-to-roll assembly of carbon nanotubes for thin-film transistors J. Am. Chem. Soc. 2014, 136, 11188- 11194.

66

Cao, X.; Chen, H. T.; Gu, X. F.; Liu, B. L.; Wang, W. L.; Cao, Y.; Wu, F. Q.; Zhou, C. W. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes. ACS Nano 2014, 8, 12769-12776.

Nano Research
Pages 2179-2187
Cite this article:
Li Z, Ding J, Finnie P, et al. Raman microscopy mapping for the purity assessment of chirality enriched carbon nanotube networks in thin-film transistors. Nano Research, 2015, 8(7): 2179-2187. https://doi.org/10.1007/s12274-015-0725-y

712

Views

51

Crossref

N/A

Web of Science

54

Scopus

4

CSCD

Altmetrics

Received: 18 September 2014
Revised: 08 January 2015
Accepted: 13 January 2015
Published: 07 May 2015
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2015
Return