AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Broad negative thermal expansion operation-temperature window in antiperovskite manganese nitride with small crystallites

Jie Tan1,2Rongjin Huang1( )Wei Wang1Wen Li1,2Yuqiang Zhao1,2Shaopeng Li1,2Yemao Han1,2Chuanjun Huang1Laifeng Li1( )
State Key Laboratory of Technologies in Space Cryogenic PropellantsTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
University of Chinese Academy of SciencesBeijing100049China
Show Author Information

Graphical Abstract

Abstract

Using spark plasma sintering (SPS), Mn3Cu0.6Ge0.4N crystallites have been fabricated with different crystallite sizes, and their magnetic properties and thermal behaviors were systemically investigated. With decreasing crystallite size, the magnetic transition becomes increasingly slow, accompanied by broadening of the negative thermal expansion (NTE) operation-temperature window. The NTE operation-temperature window for the 12-nm crystallite sample reaches at 140 K, which is about 75% larger than that of the 74-nm crystallite sample. The magnetic properties and NTE operation-temperature window can be tuned by varying the crystallite size. This discovery will promote an even wider range of practical applications in precision devices.

References

1

Evans, J. S. O.; Hu, Z.; Jorgensen, J. D.; Argyriou, D. N.; Short, S.; Sleight, A. W. Compressibility, phase transitions, and oxygen migration in zirconium tungstate, ZrW2O8. Science 1997, 275, 61–65.

2

Li, W. H.; Wu, S. Y.; Yang, C. C.; Lai, S. K.; Lee, K. C.; Huang, H. L.; Yang, H. D. Thermal contraction of Au nanoparticles. Phys. Rev. Lett. 2002, 89, 135504.

3

Takenaka, K.; Takagi, H. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides. Appl. Phys. Lett. 2005, 87, 261902.

4

Sun, Y.; Wang, C.; Wen, Y. C.; Zhu, K. G.; Zhao, J. T. Lattice contraction and magnetic and electronic transport properties of Mn3Zn1-xGexN. Appl. Phys. Lett. 2007, 91, 231913.

5

Zheng, X. G.; Kubozono, H.; Yamada, H.; Kato, K.; Ishiwata, Y.; Xu, C. N. Giant negative thermal expansion in magnetic nanocrystals. Nat. Nanotechnol. 2008, 3, 724–726.

6

Grigoriadis, C.; Haase, N.; Butt, H. J.; Müllen, K.; Floudas, G. Negative thermal expansion in discotic liquid crystals of nanographenes. Adv. Mater. 2010, 22, 1403–1406.

7

Hu, P. H.; Chen, J.; Deng, J. X.; Xing, X. R. Thermal expansion, ferroelectric and magnetic properties in (1-x)PbTiO3-xBi(Ni1/2Ti1/2)O3. J. Am. Chem. Soc. 2010, 132, 1925–1928.

8

Azuma, M.; Chen, W. T.; Seki, H.; Czapski, M.; Olga, S.; Oka, K.; Mizumaki, M.; Watanuki, T.; Ishimatsu, N.; Kawamura, N. et al. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer. Nat. Commun. 2011, 2, 347.

9

Li, C. W.; Tang, X. L.; Muñoz, J. A.; Keith, J. B.; Tracy, S. J.; Abernathy, D. L.; Fultz, B. Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3. Phys. Rev. Lett. 2011, 107, 195504.

10

Lin, J. C.; Wang, B. S.; Lin, S.; Tong, P.; Lu, W. J.; Zhang, L.; Song, W. H.; Sun, Y. P. The study of negative thermal expansion and magnetic evolution in antiperovskite compounds Cu08-x. SnxMn0.2NMn3 (0≤x≤0.3). J. Appl. Phys. 2012, 111, 043905.

11

Chen, J.; Fan, L. L.; Ren, Y.; Pan, Z.; Deng, J. X.; Yu, R. B.; Xing, X. R. Unusual transformation from strong negative to positive thermal expansion in PbTiO3-BiFeO3 perovskite. Phys. Rev. Lett. 2013, 110, 115901.

12

Chen, J.; Wang, F. F.; Huang, Q. Z.; Hu, L.; Song, X. P.; Deng, J. X.; Yu, R. B.; Xing, X. R. Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi, La)FeO3 over a giant range. Sci. Rep. 2013, 3, 2458.

13

Huang, R. J.; Liu, Y. Y.; Fan, W.; Tan, J.; Xiao, F. R.; Qian, L. H.; Li, L. F. Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds. J. Am. Chem. Soc. 2013, 135, 11469–11472.

14

Tong, P.; Louca, D.; King, G.; Llobet, A.; Lin, J. C.; Sun, Y. P. Magnetic transition broadening and local lattice distortion in the negative thermal expansion antiperovskite Cu1-xSnxNMn3. Appl. Phys. Lett. 2013, 102, 041908.

15

Takenaka, K.; Ozawa, A.; Shibayama, T.; Kaneko, N.; Oe, T.; Urano, C. Extremely low temperature coefficient of resistance in antiperovskite Mn3Ag1-xCuxN. Appl. Phys. Lett. 2011, 98, 022103.

16

Chen, Z.; Huang, R. J.; Chu, X. X.; Wu, Z. X.; Liu, Z. N.; Zhou, Y.; Li, L. F. Negative thermal expansion and nearly zero temperature coefficient of resistivity in anti-perovskite manganese nitride Mn3CuN co-doped with Ag and Sn. Cryogenics 2012, 52, 629–631.

17

Huang, R. J.; Li, L. F.; Cai, F. S.; Xu, X. D.; Qian, L. H. Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si. Appl. Phys. Lett. 2008, 93, 081902.

18

Sun, Y.; Guo, Y. F.; Tsujimoto, Y.; Yang, J. J.; Shen, B.; Yi, W.; Matsushita, Y.; Wang, C.; Wang, X.; Li, J. et al. Carbon-induced ferromagnetism in the antiferromagnetic metallic host material Mn3ZnN. Inorg. Chem. 2013, 52, 800–806.

19

Iikubo, S.; Kodama, K.; Takenaka, K.; Takagi, H.; Takigawa, M.; Shamoto, S. Local lattice distortion in the giant negative thermal expansion material Mn3Cu1-xGexN. Phys. Rev. Lett. 2008, 101, 205901.

20

Takenaka, K.; Asano, K.; Misawa, M.; Takagi, H. Negative thermal expansion in Ge-free antiperovskite manganese nitrides: Tin-doping effect. Appl. Phys. Lett. 2008, 92, 011927.

21

Daengsakul, S.; Thomas, C.; Mongkolkachit, C.; Maensirt, S. Effects of crystallite size on magnetic properties of thermalhydro decomposition prepared La1-xSrxMnO3 nanocrystalline powders. Solid State Sci. 2012, 14, 1306–1314.

22

Li, X. G.; Zhang, T. Size effects on charge ordering and magnetic properties in La. 250Ca0.75MnO3. Ceram. Int. 2009, 35, 151–155.

23

Chia, C. H.; Zakaria, S.; Yusoff, M.; Goh, S. C.; Haw, C. Y.; Ahmadi, Sh.; Huang, N. M.; Lim, H. N. Size and crystallinitydependent magnetic properties of CoFe2O4 nanocrystals. Ceram. Int. 2010, 36, 605–609.

24

Prylypko, S. Y.; Akimov, G. Y.; Revenko, Y. F.; Varyukhin, V. N. Crystallite size and magnetic properties of La0.7Mn1.3OΔ. Tech. Phys. 2010, 55, 1056–1057.

25

Berkowitz, A. E; Schuele, W. J.; Flanders, P. J. Influence of crystallite size on the magnetic properties of acicular γ-Fe2O3 particles. J. Appl. Phys. 1968, 39, 1261–1263.

26

Wang, X.; Nie, S. H.; Li, J. J.; Clinite, R.; Wartenbe, M.; Martin, M.; Liang, W. X.; Cao, J. M. Electronic Grüneisen parameter and thermal expansion in ferromagnetic transition metal. Appl. Phys. Lett. 2008, 92, 121918.

27

Zhang, Y. Q.; Zhang, Z. D.; Aarts, J. First-order nature of a metamagnetic transition and mechanism of giant magnetoresistance in Mn2Sb0.95Sn0.05. Phys. Rev. B 2004, 70, 132407.

28

Zhang, B.; Zhang, X. X.; Yu, S. Y.; Chen, J. L.; Cao, Z. X.; Wu, G. H. Giant magnetothermal conductivity in the Ni-Mn-In ferromagnetic shape memory alloys. Appl. Phys. Lett. 2007, 91, 012510.

29

Gu, R. Y.; Wang, Z. D.; Ting, C. S. Theory of electric-fieldinduced metal-insulator transition in doped manganites. Phys. Rev. B 2003, 67, 153101.

30

Bhowmik, R. N.; Nagarajan, R.; Ranganathan, R. Magnetic enhancement in antiferromagnetic nanoparticle of CoRh2O4. Phys. Rev. B 2004, 69, 054430.

Nano Research
Pages 2302-2307
Cite this article:
Tan J, Huang R, Wang W, et al. Broad negative thermal expansion operation-temperature window in antiperovskite manganese nitride with small crystallites. Nano Research, 2015, 8(7): 2302-2307. https://doi.org/10.1007/s12274-015-0740-z

648

Views

18

Crossref

N/A

Web of Science

19

Scopus

3

CSCD

Altmetrics

Received: 16 November 2014
Revised: 30 January 2015
Accepted: 02 February 2015
Published: 12 May 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return