AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules

Jia Zhang1Yue Yuan1Yu Wang2Fanfei Sun2Gaolin Liang1Zheng Jiang2Shu-Hong Yu1,3 ( )
Division of Nanomaterials and ChemistryHefei National Laboratory for Physical Sciences at MicroscaleCollaborative Innovation Center of Suzhou Nano Science and TechnologyDepartment of ChemistryUniversity of Science and Technology of ChinaHefei230026China
Shanghai Synchrotron Radiation FacilityShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201204China
Key Laboratory of Materials Physicsand Anhui Key Laboratory of Nanomaterials and NanostructuresInstitute of Solid State PhysicsChinese Academy of SciencesHefei230031China
Show Author Information

Graphical Abstract

Abstract

Even though great advances have been achieved in the synthesis of luminescent metal nanoclusters, it is still challenging to develop metal nanoclusters with high quantum efficiency as well as multiple sensing functionalities. Here, we demonstrate the rapid preparation of glutathione-capped Au/Ag nanoclusters (GS-Au/Ag NCs) using microwave irradiation and their unique sensing capacities. Compared to bare GS-Au NCs, the doped Au/Ag NCs possess an enhanced quantum yield (7.8% compared to 2.2% for GS-Au NCs). Several characterization techniques were used to elucidate the atomic composition, particulate character, and electronic structure of the fabricated NCs. According to the X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES) spectra, a significant amount of Au exists in the oxidized state as Au(I), and the Ag atoms are positively charged. In contrast to those nanoclusters that detect only one analyte, the GS-Au/Ag NCs can be used as a versatile sensor for metal ions, anions, and small molecules. In this manner, the NCs can be regarded as a unique sensor-on-a-nanoparticle.

Electronic Supplementary Material

Download File(s)
12274_2015_743_MOESM1_ESM.pdf (1,001.5 KB)

References

1

Jin, R. C. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2010, 2, 343–362.

2

Laaksonen, T.; Ruiz, V.; Liljeroth, P.; Quinn, B. M. Quantised charging of monolayer-protected nanoparticles. Chem. Soc. Rev. 2008, 37, 1836–1846.

3

Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758.

4

Zheng, J.; Zhou, C.; Yu, M. X.; Liu, J. B. Different sized luminescent gold nanoparticles. Nanoscale 2012, 4, 4073– 4083.

5

Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)- thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261–5270.

6

Negishi, Y.; Takasugi, Y.; Sato, S.; Yao, H.; Kimura, K.; Tsukuda, T. Kinetic stabilization of growing gold clusters by passivation with thiolates. J. Phys. Chem. B 2006, 110, 12218–12221.

7

Kumar, S.; Bolan, M. D.; Bigioni, T. P. Glutathione-stabilized magic-number silver cluster compounds. J. Am. Chem. Soc. 2010, 132, 13141–13143.

8

Yu, Y.; Chen, X.; Yao, Q. F.; Yu, Y.; Yan, N.; Xie, J. P. Scalable and precise synthesis of thiolated Au10-12, Au15, Au18, and Au25 nanoclusters via pH controlled CO reduction. Chem. Mater. 2013, 25, 946–952.

9

Bigioni, T. P.; Whetten, R. L.; Dag, Ö. Near-infrared luminescence from small gold nanocrystals. J. Phys. Chem. B 2000, 104, 6983–6986.

10

Link, S.; Beeby, A.; FitzGerald, S.; El-Sayed, M. A.; Schaaff, T. G.; Whetten, R. L. Visible to infrared luminescence from a 28-atom gold cluster. J. Phys. Chem. B 2002, 106, 3410–3415.

11

Huang, C. C.; Yang, Z.; Lee, K. H.; Chang, H. T. Synthesis of highly fluorescent gold nanoparticles for sensing mercury(Ⅱ). Angew. Chem. Int. Ed. 2007, 46, 6824–6828.

12

Lin, C. A. J.; Yang, T. Y.; Lee, C. H.; Huang, S. H.; Sperling, R. A.; Zanella, M.; Li, J. K.; Shen, J. L.; Wang, H. H.; Yeh, H. I. et al. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 2009, 3, 395– 401.

13

Adhikari, B.; Banerjee, A. Facile synthesis of water-soluble fluorescent silver nanoclusters and Hg sensing. Chem. Mater. 2010, 22, 4364–4371.

14

Xie, J. P.; Zheng, Y. G.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889.

15

Shang, L.; Dörlich, R. M.; Brandholt, S.; Schneider, R.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U. Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale 2011, 3, 2009–2014.

16

Shang, L.; Yang, L. X.; Stockmar, F.; Popescu, R.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U. Microwave- assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+ in living cells using fluorescence imaging. Nanoscale 2012, 4, 4155–4160.

17

Gawande, M. B.; Shelke, S. N.; Zboril, R.; Varma, R. S. Microwave-assisted chemistry: Synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res. 2014, 47, 1338–1348.

18

Jao, Y. C.; Chen, M. K.; Lin, S. Y. Enhanced quantum yield of dendrimer-entrapped gold nanodots by a specific ion-pair association and microwave irradiation for bioimaging. Chem. Commun. 2010, 46, 2626–2628.

19

Fields-Zinna, C. A.; Crowe, M. C.; Dass, A.; Weaver, J. E. F.; Murray, R. W. Mass spectrometry of small bimetal monolayer-protected clusters. Langmuir 2009, 25, 7704–7710.

20

Negishi, Y.; Munakata, K.; Ohgake, W.; Nobusada, K. Effect of copper doping on electronic structure, geometric structure, and stability of thiolate-protected Au25 nanoclusters. J. Phys. Chem. Lett. 2012, 3, 2209–2214.

21

Qian, H. F.; Jiang, D. E.; Li, G.; Gayathri, C.; Das, A.; Gil, R. R.; Jin, R. C. Monoplatinum doping of gold nanoclusters and catalytic application. J. Am. Chem. Soc. 2012, 134, 16159–16162.

22

Negishi, Y.; Iwai, T.; Ide, M. Continuous modulation of electronic structure of stable thiolate-protected Au25 cluster by Ag doping. Chem. Commun. 2010, 46, 4713–4715.

23

Liu, H. Y.; Zhang, X.; Wu, X. M.; Jiang, L. P.; Burda, C.; Zhu, J. J. Rapid sonochemical synthesis of highly luminescent non-toxic AuNCs and Au@AgNCs and Cu (Ⅱ) sensing. Chem. Commun. 2011, 47, 4237–4239.

24

Le Guével, X.; Trouillet, V.; Spies, C.; Li, K.; Laaksonen, T.; Auerbach, D.; Jung, G.; Schneider, M. High photostability and enhanced fluorescence of gold nanoclusters by silver doping. Nanoscale 2012, 4, 7624–7631.

25

Zhou, T. Y.; Lin, L. P.; Rong, M. C.; Jiang, Y. Q.; Chen, X. Silver–gold alloy nanoclusters as a fluorescence-enhanced probe for aluminum ion sensing. Anal. Chem. 2013, 85, 9839–9844.

26

Wang, S. X.; Meng, X. M.; Das, A.; Li, T.; Song, Y. B.; Cao, T. T.; Zhu, X. Y.; Zhu, M. Z.; Jin, R. C. A 200-fold quantum yield boost in the photoluminescence of silver- doped AgxAu25-x nanoclusters: The 13 th silver atom matters. Angew. Chem. Int. Ed. 2014, 53, 2376–2380.

27

Zhang, J.; Chen, C. X.; Xu, X. W.; Wang, X. L.; Yang, X. R. Use of fluorescent gold nanoclusters for the construction of a NAND logic gate for nitrite. Chem. Commun. 2013, 49, 2691–2693.

28

Chen, W. Y.; Lan, G. Y.; Chang, H. T. Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions. Anal. Chem. 2011, 83, 9450–9455.

29

Li, P. H.; Lin, J. Y.; Chen, C. T.; Ciou, W. R.; Chan, P. H.; Luo, L. Y.; Hsu, H. Y.; Diau, E. W. G.; Chen, Y. C. Using gold nanoclusters as selective luminescent probes for phosphate- containing metabolites. Anal. Chem. 2012, 84, 5484–5488.

30

Yuan, X.; Tay, Y. Q.; Dou, X. Y.; Luo, Z. T.; Leong, D. T.; Xie, J. P. Glutathione protected silver nanoclusters as cysteine-selective fluorometric and colorimetric probe. Anal. Chem. 2013, 85, 1913–1919.

31

Kumara, C.; Dass, A. AuAg alloy nanomolecules with 38 metal atoms. Nanoscale 2012, 4, 4084–4086.

32

Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.

33

Huang, C. C.; Liao, H. Y.; Shiang, Y. C.; Lin, Z. H.; Yang, Z.; Chang, H. T. Synthesis of wavelength-tunable luminescent gold and gold/silver nanodots. J. Mater. Chem. 2009, 19, 755–759.

34

Yue, Y.; Liu, T. Y.; Li, H. W.; Liu, Z. Y.; Wu, Y. Q. Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(I) ions. Nanoscale 2012, 4, 2251–2254.

35

Dou, X. Y.; Yuan, X.; Yu, Y.; Luo, Z. T.; Yao, Q. F.; Leong, D. T.; Xie, J. P. Lighting up thiolated Au@Ag nanoclusters via aggregation-induced emission. Nanoscale 2014, 6, 157–161.

36

Liu, J. B.; Yu, M. X.; Ning, X. H.; Zhou, C.; Yang, S. Y.; Zheng, J. PEGylation and zwitterionization: Pros and cons in the renal clearance and tumor targeting of near-IR-emitting gold nanoparticles. Angew. Chem. Int. Ed. 2013, 52, 12572– 12576.

37

Shang, L; Azadfar, N.; Stockmar, F.; Send, W.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U. One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging. Small 2011, 7, 2614–2620.

38

Zhou, C.; Sun, C.; Yu, M. X.; Qin, Y. P.; Wang, J. G.; Kim, M.; Zheng, J. Luminescent gold nanoparticles with mixed valence states generated from dissociation of polymeric Au(I) thiolates. J. Phys. Chem. C 2010, 114, 7727–7732.

39

Qian, H. F.; Jin, R. C. Controlling nanoparticles with atomic precision: The case of Au144(SCH2CH2Ph)60. Nano Lett. 2009, 9, 4083–4087.

40

Qian, H. F.; Jin, R. C. Ambient synthesis of Au144(SR)60 nanoclusters in methanol. Chem. Mater. 2011, 23, 2209–2217.

41

Wu, Z. K.; MacDonald, M. A.; Chen, J.; Zhang, P.; Jin, R. C. Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters. J. Am. Chem. Soc. 2011, 133, 9670–9673.

42

Wei, W. T.; Lu, Y. Z.; Chen, W.; Chen, S. W. One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J. Am. Chem. Soc. 2011, 133, 2060–2063.

43

Wagner, C. D. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Data for Use in X-ray Photoelectron Spectroscopy; Phys. Electron. Division, Perkin-Elmer Corp. : Eden Prairie, MN, 1979.

44

Weaver, J. F.; Hoflund, G. B. Surface characterization study of the thermal-decomposition of Ag2O. Chem. Mater. 1994, 6, 1693–1699.

45

Yu, Y.; Luo, Z. T.; Chevrier, D. M.; Leong, D. T.; Zhang, P.; Jiang, D. E.; Xie, J. P. Identification of a highly luminescent Au22(SG)18 nanocluster. J. Am. Chem. Soc. 2014, 136, 1246–1249.

46

Yamamoto, T.; Takenaka, S.; Tanaka, T.; Baba, T. Stability of silver cluster in zeolite A and Y catalysts. J. Phys. : Conf. Ser. 2009, 190, 012171.

47

Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H. F.; Jin, R. C. A quantum alloy: The ligand-protected Au25-xAgx(SR)18 cluster. J. Phys. Chem. C 2013, 117, 7914–7923.

48

Luo, Z. T.; Yuan, X.; Yu, Y.; Zhang, Q. B.; Leong, D. T.; Lee, J. Y.; Xie, J. P. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662– 16670.

49

Shang, L.; Stockmar, F.; Azadfar, N.; Nienhaus, G. U. Intracellular thermometry by using fluorescent gold nanoclusters. Angew. Chem. Int. Ed. 2013, 52, 11154–11157.

50

Zhou, T. Y.; Rong, M. C.; Cai, Z. M.; Yang, C. Y. J.; Chen, X. Sonochemical synthesis of highly fluorescent glutathione- stabilized Ag nanoclusters and S2- sensing. Nanoscale 2012, 4, 4103–4106.

51

Wang, M.; Wu, Z. K.; Yang, J.; Wang, G. Z.; Wang, H. Z.; Cai, W. P. Au25(SG)18 as a fluorescent iodide sensor. Nanoscale 2012, 4, 4087–4090.

52

Tu, X. J.; Chen, W. B.; Guo, X. Q. Facile one-pot synthesis of near-infrared luminescent gold nanoparticles for sensing copper (Ⅱ). Nanotechnology 2011, 22, 095701.

53

Wang, Z. X.; Zheng, C. L.; Ding, S. N. Label-free detection of sulfide ions based on fluorescence quenching of unmodified core-shell Au@Ag nanoclusters. RSC Adv. 2014, 4, 9825–9829.

Nano Research
Pages 2329-2339
Cite this article:
Zhang J, Yuan Y, Wang Y, et al. Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules. Nano Research, 2015, 8(7): 2329-2339. https://doi.org/10.1007/s12274-015-0743-9

581

Views

77

Crossref

N/A

Web of Science

73

Scopus

6

CSCD

Altmetrics

Received: 20 October 2014
Revised: 07 February 2015
Accepted: 10 February 2015
Published: 16 May 2015
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2015
Return