Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Field-effect transistor with a chemically synthesized MoS2 sensing channel for label-free and highly sensitive electrical detection of DNA hybridization

Doo-Won Lee1,§Jinhwan Lee2,§Il Yung Sohn1Bo-Yeong Kim3Young Min Son4Hunyoung Bark3Jaehyuck Jung3Minseok Choi5Tae Hyeong Kim5Changgu Lee2,3()Nae-Eung Lee1,3,4()
Department of Advanced Materials Science & EngineeringSungkyunkwan University, Suwon, Gyunggi-do, 440-746Republic of Korea
Department of Mechanical EngineeringSungkyunkwan University, Suwon, Gyunggi-do, 440-746Republic of Korea
SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan University, Suwon, Gyunggi-do, 440-746Republic of Korea
Samsung Advanced Institute for Health Sciences & Technology (SAIHST)Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746Republic of Korea
New Materials TeamFuture Device R & D DepartmentLG Electronics Advanced Research InstituteSeoul, 137-724Republic of Korea

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

A field-effect transistor (FET) with two-dimensional (2D) few-layer MoS2 as a sensing-channel material was investigated for label-free electrical detection of the hybridization of deoxyribonucleic acid (DNA) molecules. The high-quality MoS2-channel pattern was selectively formedthrough the chemical reaction of the Mo layer with H2S gas. The MoS2 FET was very stable in an electrolyte and inert to pH changes due to the lack of oxygen-containing functionalities on the MoS2 surface. Hybridization of single-stranded target DNA molecules with single-stranded probe DNA molecules physically adsorbed on the MoS2 channel resulted in a shift of the threshold voltage (Vth) in the negative direction and an increase in the drain current. The negative shift in Vth is attributed to electrostatic gating effects induced by the detachment of negatively charged probe DNA molecules from the channel surface after hybridization. A detection limit of 10 fM, high sensitivity of 17 mV/dec, and high dynamic range of 106 were achieved. The results showed that a bio-FET with an ultrathin 2D MoS2 channel can be used to detect very small concentrations of target DNA molecules specifically hybridized with the probe DNA molecules.

Electronic Supplementary Material

Download File(s)
12274_2015_744_MOESM1_ESM.pdf (1.5 MB)

References

1

Bellan, L. M.; Wu, D.; Langer, R. S. Current trends in nanobiosensor technology. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2011, 3, 229–246.

2

Kirsch, J.; Siltanen, C.; Zhou, Q.; Revzin, A.; Simonian, A. Biosensor technology: Recent advances in threat agent detection and medicine. Chem. Soc. Rev. 2013, 42, 8733–8768.

3

Timko, B. P.; Cohen-Karni, T.; Quan, Q.; Tian, B. Z.; Lieber, C. M. Design and implementation of functional nanoelectronic interfaces with biomolecules, cells, and tissue using nanowire device arrays. IEEE Trans. Nanotechnol. 2010, 9, 269–280.

4

Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301.

5

Ray, S.; Chandra, H.; Srivastava, S. Nanotechniques in proteomics: Current status, promises and challenges. Biosens. Bioelectron. 2010, 25, 2389–2401.

6

Vashist, S. K.; Zheng, D.; Al-Rubeaan, K.; Luong, J. H. T.; Sheu, F. S. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol. Adv. 2011, 29, 169–188.

7

Jacobs, C. B.; Peairs, M. J.; Venton, B. J. Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 2010, 662, 105–127.

8

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field in atomically thin carbon films. Science 2004, 306, 666–669.

9

Huang, X.; Yin, Z. Y.; Wu, S. X.; Qi, X. Y.; He, Q. Y.; Zhang, Q. C.; Yan, Q. Y.; Boey, F.; Zhang, H. Graphene- based materials: Synthesis, characterization, properties, and applications. Small 2011, 7, 1876–1902

10

Wu, S. X.; He, Q. Y.; Tan, C. L.; Wang, Y. D.; Zhang, H. Graphene-based electrochemical sensors. Small 2013, 9, 1160–1172.

11

Yuan, W. J.; Shi, G. Q. Graphene-based gas sensors. J. Mater. Chem. A 2013, 1, 10078−10091.

12

Liu, S.; Guo, X. F. Carbon nanomaterials field-effect- transistor-based biosensors. NPG Asia Mater. 2012, 4, e23.

13

Ohno, Y.; Maehashi, K.; Matsumoto, K. Chemical and biological sensing applications based on graphene field-effect transistors. Biosens. Bioelectron. 2010, 26, 1727–1730.

14

Zhan, B. B.; Li, C.; Yang, J.; Jenkins, G.; Huang, W.; Dong, X. C. Graphene field-effect transistor and its application for electronic sensing. Small 2014, 10, 4042–4065.

15

Buscema, M.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. The effect of the substrate on the raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561–571.

16

Li, W. F.; Zhang, G.; Guo, M.; Zhang, Y. W. Strain-tunable electronic and transport properties of MoS2 nanotubes. Nano Res. 2014, 7, 518–527.

17

Cheng, Z. G.; Hou, J. F.; Zhou, Q. Y.; Li, T. Y.; Li, H. B.; Yang, L.; Jiang, K. L.; Wang, C.; Li, Y. C.; Fang, Y. Sensitivity limits and scaling of bioelectronic graphene transducers. Nano Lett. 2013, 13, 2902–2907.

18

Kim, D. J.; Sohn, I. Y.; Jung, J. H.; Yoon, O. J.; Lee, N. E.; Park, J. S. Reduced graphene oxide field-effect transistor for label-free femtomolar protein detection. Biosens. Bioelectron. 2013, 41, 621–626.

19

Kim, D. J.; Park, H. C.; Sohn, I. Y.; Jung, J. H.; Yoon, O. J.; Park, J. S.; Yoon, M. Y.; Lee, N. E. Electrical graphene aptasensor for ultra-sensitive detection of anthrax toxin with amplified signal transduction. Small 2013, 9, 3352–3360.

20

Cheng, Z. G.; Li, Q.; Li, Z. J.; Zhou, Q. Y.; Fang, Y. Suspended graphene sensors with improved signal and reduced noise. Nano Lett. 2010, 10, 1864–1868.

21

Heller, I.; Chatoor, S.; Männik, J.; Zevenbergen, M. A. G.; Dekker, C.; Lemay, S. G. Influence of electrolyte composition on liquid-gated carbon nanotube and graphene transistors. J. Am. Chem. Soc. 2010, 132, 17149–17156.

22

Heller, I.; Chatoor, S.; Männik, J.; Zevenbergen, M. A. G.; Oostinga, J. B.; Morpurgo, A. F.; Dekker, C.; Lemay, S. G. Charge noise in graphene transistors. Nano Lett. 2010, 10, 1563–1567.

23

Dong, X. C.; Shi, Y. M.; Huang, W.; Chen, P.; Li, L. J. Electrical detection of DNA hybridization with single-base specificity using transistors based on cvd-grown graphene sheets. Adv. Mater. 2010, 22, 1649–1653.

24

He, Q. Y.; Sudibya, H. G.; Yin, Z. Y.; Wu, S. X.; Li, H.; Boey, F.; Huang, W.; Chen, P.; Zhang, H. Centimeter-long and large-scale micropatterns of reduced graphene oxide films: Fabrication and sensing applications. ACS Nano 2010, 4, 3201–3208.

25

Ohno, Y.; Maehashi, K.; Yamashiro, Y.; Matsumoto, K. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett. 2009, 9, 3318–3322.

26

Huang, Y. X.; Dong, X. C.; Shi, Y. M.; Li, C. M.; Li, L. J.; Chen, P. Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2010, 2, 1485–1488.

27

Pumera, M. Graphene in biosensing. Mater. Today 2011, 14, 308–315.

28

Sohn, I. Y.; Kim, D. J.; Jung, J. H.; Yoon, O. J.; Nguyen Thanh, T.; Tran Quang, T.; Lee, N. E. pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors. Biosens. Bioelectron. 2013, 45, 70–76.

29

Kim, J.; Yoon, M. Y. Recent advances in rapid and ultrasensitive biosensors for infectious agents: Lesson from bacillus anthracis diagnostic sensors. Analyst. 2010, 135, 1182–1190.

30

Rao, S. S.; Mohan, K. V. K.; Atreya, C. D. Detection technologies for bacillus anthracis: Prospects and challenges. J. Microbiol. Methods 2010, 82, 1–10.

31

Dong, X. C.; Shi, Y. M.; Huang, W.; Chen, P.; Li, L. J. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 2010, 22, 1649–1653.

32

Chen, T. Y.; Loan, P. T. K.; Hsu, C. L.; Lee, Y. H.; Wang, J. T. W.; Wei, K. H.; Lin, C. T.; Li, L. J. Label-free detection of DNA hybridization using transistors based on CVD grown graphene. Biosens. Bioelectron. 2013, 41, 103–109.

33

Yin, Z. Y.; He, Q. Y.; Huang, X.; Zhang, J.; Wu, S. X.; Chen, P.; Lu, G.; Chen, P.; Zhang, Q. C.; Yan, Q. Y. et al. Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors. Nanoscale 2012, 4, 293–297.

34

Lin, C. T.; Loan, P. T. K.; Chen, T. Y.; Liu, K. K.; Chen, C. H.; Wei, K. H.; Li, L. J. Label-free electrical detection of DNA hybridization on graphene using hall effect measurements: Revisiting the sensing mechanism. Adv. Funct. Mater. 2013, 23, 2301–2307.

35

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

36

Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. C.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80.

37

Yoon, Y.; Ganapathi, K.; Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 2011, 11, 3768–3773.

38

Pu, J.; Yomogida, Y.; Liu, K. K.; Li, L. J.; Iwasa, Y.; Takenobu, T. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 2012, 12, 4013–4017.

39

Zhang, Y. J.; Ye, J. T.; Matsuhashi, Y.; Iwasa, Y. Ambipolar MoS2 thin flake transistors. Nano Lett. 2012, 12, 1136–1140.

40

Li, H.; Wu, J.; Yin, Z. Y.; Zhang, H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014, 47, 1067–1075.

41

Li, H.; Lu, G.; Yin, Z. Y.; He, Q. Y.; Li, H.; Zhang, Q.; Zhang, H. Optical identification of single- and few-layer MoS2 sheets. Small 2012, 8, 682–686.

42

Kwon, H.; Choi, W.; Lee, D.; Lee, Y.; Kwon, J.; Yoo, B.; Grigoropoulos, C. P.; Kim, S. Selective and localized laser annealing effect for high-performance flexible multilayer MoS2 thin-film transistors. Nano Res. 2014, 7, 1137–1145.

43

Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing no at room temperature. Small 2012, 8, 63–67.

44

He, Q. Y.; Zeng, Z. Y.; Yin, Z. Y.; Li, H.; Wu, S. X.; Huang, X.; Zhang, H. Fabrication of flexible MoS2 thin- film transistor arrays for practical gas-sensing applications. Small 2012, 8, 2994–2999.

45

Sarkar, D.; Liu, W.; Xie, X. J.; Anselmo, A. C.; Mitragotri, S.; Banerjee, K. MoS2 field-effect transistor for next- generation label-free biosensors. ACS Nano 2014, 8, 3992– 4003.

46

Wang, L.; Wang, Y.; Wong, J. I.; Palacios, T.; Kong, J.; Yang, H. Y. Functionalized MoS2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. Small 2014, 10, 1101–1105.

47

Wu, S. X.; Zeng, Z. Y.; He, Q. Y.; Wang, Z. J.; Wang, S. J.; Du, Y. P.; Yin, Z. Y.; Sun, X. P.; Chen, W.; Zhang, H. Electrochemically reduced single-layer MoS2 nanosheets: Characterization, properties, and sensing applications. Small 2012, 8, 2264–2270.

48

Zhang, Y.; Zheng, B.; Zhu, C. F.; Zhang, X.; Tan, C. L.; Li, H.; Chen, B.; Yang, J.; Chen, J. Z.; Huang, Y. et al. Single-layer transition metal dichalcogenide nanosheet-based nanosensors for rapid, sensitive, and multiplexed detection of DNA. Adv. Mater. 2015, 27, 935–939.

49

Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 2013, 135, 5998–6001.

50

Papageorgopoulos, C. A.; Jaegermann, W. Li intercalation across and along the van der Waals surfaces of MoS2(0001). Surf. Sci. 1995, 338, 83–93.

51

Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

52

Ang, P. K.; Chen, W.; Wee, A. T. S.; Loh, K. P. Solution- gated epitaxial graphene as pH sensor. J. Am. Chem. Soc. 2008, 130, 14392–14393.

53

Moses, P. G.; Mortensen, J. J.; Lundqvist, B. I.; Nørskov, J. K. Density functional study of the adsorption and van der Waals binding of aromatic and conjugated compounds on the basal plane of MoS2. J. Chem. Phys. 2009, 130, 104709.

54

Heckl, W. M.; Smith, D. P.; Binnig, G.; Klagges, H.; Hänsch, T. W.; Maddocks, J. Two-dimensional ordering of the DNA base guanine observed by scanning tunneling microscopy. Proc. Natl. Acad. Sci. USA 1991, 88, 8003–8005.

55

Lu, C. H.; Yang, H. H.; Zhu, C. L.; Chen, X.; Chen, G. N. A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed. 2009, 121, 4879–4881.

56

He, S. J.; Song, B.; Li, D.; Zhu, C. F.; Qi, W. P.; Wen, Y. Q.; Wang, L. H.; Song, S. P.; Fang, H. P.; Fan, C. H. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 2010, 20, 453–459.

57

Bonanni, A.; Pumera, M. Graphene platform for hairpin- DNA-based impedimetric genosensing. ACS Nano 2011, 5, 2356–2361.

Nano Research
Pages 2340-2350
Cite this article:
Lee D-W, Lee J, Sohn IY, et al. Field-effect transistor with a chemically synthesized MoS2 sensing channel for label-free and highly sensitive electrical detection of DNA hybridization. Nano Research, 2015, 8(7): 2340-2350. https://doi.org/10.1007/s12274-015-0744-8
Metrics & Citations  
Article History
Copyright
Return