Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Metal-free, organic-dye-based fluorescent nanorods were fabricated through a simple solvent-exchange procedure. The as-prepared nanorods exhibit low toxicity to living cells and excellent photostability. Furthermore, they are stable in solutions of various pHs and high ionic strength and in solutions with interfering metal ions. Compared with the free DPP-Br molecules in THF, these nanorods exhibit larger Stokes shift, broader absorption spectra, and greatly improved photostability. We successfully demonstrated the application of the nanorods, including their aforementioned beneficial characteristics, as a good fluorescence probe for bio-imaging.
Huh, Y. M.; Jun, Y. W.; Song, H. T.; Kim, S.; Choi, J. S.; Lee, J. H.; Yoon, S.; Kim, K. S.; Shin, J. S.; Suh, J. S. et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc. 2005, 127, 12387–12391.
Haris, M.; Singh, A.; Cai, K. J.; McArdle, E.; Fenty, M.; Davatzikos, C.; Trojanowski, J. Q.; Melhem, E. R.; Clark C. M.; Borthakur, A. T1ρ MRI in Alzheimer's disease: Detection of pathological changes in medial temporal lobe. J. Neuroimaging 2011, 21, e86–e90.
Kaur, S.; Baine, M. J.; Jain, M.; Sasson, A. R.; Batra, S. K. Early diagnosis of pancreatic cancer: Challenges and new developments. Biomarkers Med. 2012, 6, 597–612.
Acharya, R.; Wasserman, R.; Stevens, J.; Hinojosa, C. Biomedical imaging modalities: A tutorial. Comput. Med. Imaging Graph. 1995, 19, 3–25.
Hurtley, S. M.; Helmuth, L. Special Issue on Biological Imaging. Science 2003, 300, 75–102.
Gabriel, S.; Lau, R. W.; Gabriel, C. The dielectric properties of biological tissues: Ⅱ. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269.
Fear, E. C.; Stuchly, M. A. Microwave detection of breast cancer. IEEE Trans. Microwave Theory Tech. 2000, 48, 1854–1863.
Luker, G. D.; Luker, K. E. Optical imaging: Current applications and future directions. J. Nucl. Med. 2008, 49, 1–4.
Tromberg, B. J.; Pogue, B. W.; Paulsen, K. D.; Yodh, A. G.; Boas, D. A.; Cerussi, A. E. Assessing the future of diffuse optical imaging technologies for breast cancer management. Med. Phys. 2008, 35, 2443–2451.
van Dam, G. M.; Themelis, G.; Crane, L. M. A.; Harlaar, N. J.; Pleijhuis, R. G.; Kelder, W.; Sarantopoulos, A.; de Jong, J. S.; Arts, H. J. G.; van der Zee, A. G. J. et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: First in-human results. Nat. Med. 2011, 17, 1315–1319.
Sevick-Muraca, E. M. Translation of near-infrared fluorescence imaging technologies: Emerging clinical applications. Annu. Rev. Med. 2012, 63, 217–231.
Dedecker, P.; Mo, G. C. H.; Dertinger, T.; Zhang, J. Widely accessible method for superresolution fluorescence imaging of living systems. Proc. Natl. Acad. Sci. U S A 2012, 109, 10909–10914.
Luo, S. L.; Zhang, E. L.; Sun, Y. P.; Cheng, T. M.; Shi, C. M. A review of NIR dyes in cancer targeting and imaging. Biomaterials 2011, 32, 7127–7138.
Yuan, L.; Lin, W. Y.; Zheng, K. B.; He, L. W.; Huang, W. M. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem. Soc. Rev. 2013, 42, 622–661.
Gao, X. H.; Cui, Y. Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976.
Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.
Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763–775.
Yao, J.; Yang, M.; Duan, Y. X. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem. Rev. 2014, 114, 6130–6178.
Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004, 4, 11–18.
Chan, W. H.; Shiao, N. H.; Lu, P. Z. CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicol. Lett. 2006, 167, 191–200.
Chen, N.; He, Y.; Su, Y. Y.; Li, X. M.; Huang, Q.; Wang, H. F.; Zhang, X. Z.; Tai, R. Z.; Fan, C. H. The cytotoxicity of cadmium-based quantum dots. Biomaterials 2012, 33, 1238–1244.
Tsoi, K. M.; Dai, Q.; Alman, B. A.; Chan, W. C. W. Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc. Chem. Res. 2013, 46, 662– 671.
Liu, Y. S.; Sun, Y. H.; Vernier, P. T.; Liang, C. H.; Chong, S. Y. C.; Gundersen, M. A. pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells. J. Phys. Chem. C 2007, 111, 2872–2878.
Saleh, S. M.; Ali, R.; Wolfbeis, O. S. Quenching of the luminescence of upconverting luminescent nanoparticles by heavy metal ions. Chem. Eur. J. 2011, 17, 14611–14617.
Zhang, X.; Servos, M. R.; Liu, J. W. Ultrahigh nanoparticle stability against salt, pH, and solvent with retained surface accessibility via depletion stabilization. J. Am. Chem. Soc. 2012, 134, 9910–9913.
An, F. F.; Ye, J.; Zhang, J. F.; Yang, Y. L.; Zheng, C. J.; Zhang, X. J.; Liu, Z.; Lee, C. S.; Zhang, X. H. Non-blinking, highly luminescent, pH- and heavy-metal-ion-stable organic nanodots for bio-imaging. J. Mater. Chem. B 2013, 1, 3144–3151.
Miao, R.; Mu, L. X.; Zhang, H. Y.; She, G. W.; Zhou, B. J.; Xu, H. T.; Wang P. F.; Shi, W. S. Silicon nanowire-based fluorescent nanosensor for complexed Cu2+ and its bioapplications. Nano Lett. 2014, 14, 3124–3129.
Susumu, K.; Oh, E.; Delehanty, J. B.; Blanco-Canosa, J. B.; Johnson, B. J.; Jain, V.; Hervey, W. J.; Algar, W. R.; Boeneman, K.; Dawson, P. E. et al. Multifunctional compact zwitterionic ligands for preparing robust biocompatible semiconductor quantum dots and gold nanoparticles. J. Am. Chem. Soc. 2011, 133, 9480–9496.
Schieber, C.; Bestetti, A.; Lim, J. P.; Ryan, A. D.; Nguyen, T. L.; Eldridge, R.; White, A. R.; Gleeson, P. A.; Donnelly, P. S.; Williams, S. J. et al. Conjugation of transferrin to azide-modified CdSe/ZnS core-shell quantum dots using cyclooctyne click chemistry. Angew. Chem. Int. Ed. 2012, 51, 10523–10527.
Wu, C. F.; Chiu, D. T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem. Int. Ed. 2013, 52, 3086–3109.
Feng, L. H.; Zhu, C. L.; Yuan, H. X.; Liu, L. B.; Lv, F. T.; Wang, S. Conjugated polymer nanoparticles: Preparation, properties, functionalization and biological applications. Chem. Soc. Rev. 2013, 42, 6620–6633.
Yu, J.; Zhang, X. J.; Hao, X. J.; Zhang, X. H.; Zhou, M. J.; Lee, C. S.; Chen, X. F. Near-infrared fluorescence imaging using organic dye nanoparticles. Biomaterials 2014, 35, 3356–3364.
Wu, C. F.; Schneider, T.; Zeigler, M.; Yu, J. B.; Schiro, P. G.; Burnham, D. R.; McNeill, J. D.; Chiu, D. T. Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting. J. Am. Chem. Soc. 2010, 132, 15410–15417.
Wu, C. F.; Hansen, S. J.; Hou, Q.; Yu, J. B.; Zeigler, M.; Jin, Y. H.; Burnham, D. R.; McNeill, J. D.; Olson, J. M.; Chiu, D. T. Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew. Chem. 2011, 123, 3492– 3496.
Park, J. H.; von Maltzahn, G.; Zhang, L. L.; Derfus, A. M.; Simberg, D.; Harris, T. J.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. Small 2009, 5, 694–700.
Shin, S.; Gihm, S. H.; Park, C. R.; Kim, S.; Park, S. Y. Water-soluble fluorinated and PEGylated cyanostilbene derivative: An amphiphilic building block forming self- assembled organic nanorods with enhanced fluorescence emission. Chem. Mater. 2013, 25, 3288–3295.
Chauhan, V. P.; Popović, Z.; Chen, O.; Cui, J.; Fukumura, D.; Bawendi, M. G.; Jain, R. K. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew. Chem. Int. Ed. 2011, 50, 11417–11420.
Kolhar, P.; Anselmo, A. C.; Gupta, V.; Pant, K.; Prabhakarpandian, B.; Ruoslahti, E.; Mitragotri, S. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc. Natl. Acad. Sci. U S A 2013, 110, 10753–10758.
Magde, D.; Rojas, G. E.; Seybold, P. G. Solvent dependence of the fluorescence lifetimes of xanthene dyes. Photochem. Photobiol. 1999, 70, 737–744.
Bao, B. Q.; Tao, N. J.; Yang, D. L.; Yuwen, L. H.; Weng, L. X.; Fan, Q. L.; Huang, Q.; Wang, L. H. A controllable approach to development of multi-spectral conjugated polymer nanoparticles with increased emission for cell imaging. Chem. Commun. 2013, 49, 10623–10625.
Bao, B. Q.; Ma, M. F.; Chen, J.; Yuwen, L. H.; Weng, L. X.; Fan, Q. L.; Huang, W.; Wang, L. H. Facile preparation of multicolor polymer nanoparticle bioconjugates with specific biorecognition. ACS Appl. Mater. Interfaces 2014, 6, 11129–11135.
Li, M.; Feng, L. H.; Lu, H. Y.; Wang, S.; Chen, C. F. Tetrahydro[5]helicene-based nanoparticles for structure- dependent cell fluorescent imaging. Adv. Funct. Mater. 2014, 24, 4405–4412.
Beaune, G.; Tamang, S.; Bernardin, A.; Bayle-Guillemaud, P.; Fenel, D.; Schoehn, G.; Vinet, F.; Reiss, P.; Texier, I. Luminescence of polyethylene glycol coated CdSeTe/ZnS and InP/ZnS nanoparticles in the presence of copper cations. ChemPhysChem 2011, 12, 2247–2254.
Zhou, L.; Lin, Y. H.; Huang, Z. Z.; Ren, J. S.; Qu, X. G. Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem. Commun. 2012, 48, 1147–1149.