AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Concave Cu-Pd bimetallic nanocrystals: Ligand-based Co-reduction and mechanistic study

Lan Zhang1Hongyang Su1Mei Sun1Youcheng Wang1Wenlong Wu1Taekyung Yu2( )Jie Zeng1( )
Hefei National Laboratory for Physical Sciences at the MicroscaleKey Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of SciencesCenter of Advanced Nanocatalysis (CAN-USTC) & Department of Chemical PhysicsUniversity of Science and Technology of ChinaHefei230026China
Department of Chemical EngineeringCollege of Engineering, Kyung Hee University, Yongin, 446-701Republic of Korea
Show Author Information

Graphical Abstract

Abstract

The synthesis of highly uniform alloy nanocrystals with a concave feature is desirable for applications in catalysis but is an arduous task. This article proposes an initiative protocol for the fabrication of novel Cu-Pd alloy nanocrystals, wherein the volume of decylamine (DA) in the reaction system was found to greatly influence the formation of different morphologies, including the tetrahedron (TH), concave tetrahedron (CTH), rhombohedral-tetrapod (RTP), and tetrapod (TP). The alloy structure of the products arises from the coordination interaction between the DA and metal ions, which affects the reduction potential of Cu and Pd species, and thus yields co-reduction. Other reaction parameters, such as the type of ligand, amount of reductant, and temperature, were also altered to study the growth mechanism, yielding consistent conclusions in the diffusion-controlled regime. As a catalyst, 48-nm Cu-Pd concave tetrahedral nanocrystals were highly active for the hydrogenation of 3-nitrostyrene and exhibited > 99.9% chemoselectivity to C=C instead of -NO2.

Electronic Supplementary Material

Download File(s)
12274_2015_752_MOESM1_ESM.pdf (4.9 MB)

References

1

Rodriguez, J. A.; Goodman, D. W. The Nature of the Metal- Metal Bond in Bimetallic Surfaces. Science 1992, 257, 897–903.

2

Chen, A.; Holt-Hindle, P. Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications. Chem. Rev. 2010, 110, 3767–3804.

3

Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. D. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692–697.

4

Shen, S. L.; Zhuang, J.; Yang, Y.; Wang, X. Highly monodisperse Cu- and Ag-based bimetallic nanocrystals for the efficient utilization of noble metals in catalysis. Nanoscale 2011, 3, 272–279.

5

Sugano, Y.; Shiraishi, Y.; Tsukamoto, D.; Ichikawa, S.; Tanaka, S.; Hirai, T. Supported Au–Cu Bimetallic Alloy Nanoparticles: An Aerobic Oxidation Catalyst with Regenerable Activity by Visible-Light Irradiation. Angew. Chem. Int. Ed. 2013, 125, 5403–5407.

6

Wang, D. S.; Li, Y. D. Bimetallic Nanocrystals: Liquid-Phase Synthesis and Catalytic Applications. Adv. Mater. 2011, 23, 1044–1060.

7

Son, S. U.; Jang, Y. J.; Park, J.; Na, H. B.; Park, H. M.; Yun, H. J.; Lee, J.; Hyeon, T. Designed Synthesis of Atom- Economical Pd/Ni Bimetallic Nanoparticle-Based Catalysts for Sonogashira Coupling Reactions. J. Am. Chem. Soc. 2004, 126, 5026–5027.

8

Peng, Z. M.; Yang, H. Synthesis and Oxygen Reduction Electrocatalytic Property of Pt-on-Pd Bimetallic Heteronanostructures. J. Am. Chem. Soc. 2009, 131, 7542–7543.

9

Dhital, R. N.; Kamonsatikul, C.; Somsook, E.; Bobuatong, K.; Ehara, M.; Karanjit, S.; Sakurai, H. Low-Temperature Carbon– Chlorine Bond Activation by Bimetallic Gold/Palladium Alloy Nanoclusters: An Application to Ullmann Coupling. J. Am. Chem. Soc. 2012, 134, 20250–20253.

10

Kang, Y. J.; Ye, X. C.; Chen, J.; Cai, Y.; Diaz, R. E.; Adzic, R. R.; Stach, E. A.; Murray, C. B. Design of Pt−Pd Binary Superlattices Exploiting Shape Effects and Synergistic Effects for Oxygen Reduction Reactions. J. Am. Chem. Soc. 2013, 135, 42–45.

11

Sneed, B. T.; Brodsky, C. N.; Kuo, C. -H.; Lamontagne, L. K.; Jiang, Y.; Wang, Y.; Tao, F.; Huang, W. X.; Tsung, C. -K. Nanoscale-Phase-Separated Pd−Rh Boxes Synthesized via Metal Migration: An Archetype for Studying Lattice Strain and Composition Effects in Electrocatalysis. J. Am. Chem. Soc. 2013, 135, 14691–14700.

12

Zhang, L.; Zhang, J. W.; Kuang, Q.; Xie, S. F.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Cu2+-Assisted Synthesis of Hexoctahedral Au-Pd Alloy Nanocrystals with High-Index Facets. J. Am. Chem. Soc. 2011, 133, 17114–17117.

13

Kikhtyanin, O. V.; Rubanov, A. E.; Ayupov, A. B.; Echevsky, G. V. Hydroconversion of Sunflower oil on Pd/SAPO-31 Catalyst. Fuel 2010, 89, 3085–3092.

14

Nishihata, Y.; Mizuki, J.; Akao, T.; Tanaka, H.; Uenishi, M.; Kimura, M.; Okamoto, T.; Hamada, N. Self-Regeneration of a Pd-Perovskite Catalyst for Automotive Emissions Control. Nature 2002, 418, 164–167.

15

Kalita, B.; Deka, R. C. Reaction Intermediates of CO Oxidation on Gas Phase Pd4 Clusters: A Density Functional Study. J. Am. Chem. Soc. 2009, 131, 13252–13254.

16

Adams, B. D.; Chen, A. C. The Role of Palladium in a Hydrogen Economy. Mater. Today 2011, 14, 282–289.

17

Yamauchi, M.; Abe, R.; Tsukuda, T.; Kato, K.; Takata. M. Highly Selective Ammonia Synthesis from Nitrate with Photocatalytically Generated Hydrogen on CuPd/TiO2. J. Am. Chem. Soc. 2011, 133, 1150–1152.

18

Shao, M. H.; Shoemaker, K.; Peles, A.; Kaneko, K.; Protsailo, L. Pt Monolayer on Porous Pd-Cu Alloys as Oxygen Reduction Electrocatalysts. J. Am. Chem. Soc. 2010, 132, 9253–9255.

19

Zhang, F. X.; Miao, S.; Yang, Y. L.; Zhang, X.; Chen, J. X.; Guan, N. J. Size-Dependent Hydrogenation Selectivity of Nitrate on Pd-Cu/TiO2 Catalysts. J. Phys. Chem. C 2008, 112, 7665–7671.

20

Mazumder, V.; Chi, M. F.; Mankin, M. N.; Liu, Y.; Metin, Ӧ.; Sun, D. H.; More, K. L.; Sun, S. H. A Facile Synthesis of MPd (M = Co, Cu] Nanoparticles and Their Catalysis for Formic Acid Oxidation. Nano Lett. 2012, 12, 1102–1106.

21

Moon, G. D.; Ko, S.; Min, Y.; Zeng, J.; Xia, Y. N.; Jeong, U. Chemical Transformations of Nanostructured Materials. Nano Today 2011, 6, 186–203.

22

Goris, B.; Polavarapu, L.; Bals, S.; Tendeloo, G. V.; Liz- Marzán, L. M. Monitoring Galvanic Replacement Through Three-Dimensional Morphological and Chemical Mapping. Nano Lett. 2014, 14, 3220–3226.

23

Zhang, H.; Jin, M. S.; Liu, H. Y.; Wang, J. G.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Facile Synthesis of Pd-Pt Alloy Nanocages and Their Enhanced Performance for Preferential Oxidation of CO in Excess Hydrogen. ACS Nano 2011, 5, 8212–8222.

24

Mallin, M. P.; Murphy, C. J. Solution-Phase Synthesis of Sub-10 nm Au-Ag Alloy Nanoparticles. Nano Lett. 2002, 2, 1235–1237.

25

Zhang, Z. C.; Yang, Y.; Nosheen, F.; Wang, P. P.; Zhang, J. C.; Zhuang, J.; Wang, X. Fine Tuning of the Structure of Pt–Cu Alloy Nanocrystals by Glycine-Mediated Sequential Reduction Kinetics. Small 2013, 9, 3063–3069.

26

Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-Pot Synthesis of Cubic PtCu3 Nanocages with Enhanced Electrocatalytic Activity for the Methanol Oxidation Reaction. J. Am. Chem. Soc. 2012, 134, 13934–13937.

27

Fu, G. T.; Liu, Z. Y.; Chen, Y.; Lin, J.; Tang, Y. W.; Lu, T. H. Synthesis and Electrocatalytic Activity of Au@Pd Core–Shell Nanothorns for the Oxygen Reduction Reaction. Nano Res. 2014, 7, 1205–1214.

28

Zhang, Q.; Guo, X.; Liang, Z. X.; Zeng, J. H.; Yang, J.; Liao. S. J. Hybrid PdAg Alloy-Au nanorods: Controlled Growth, Optical Properties and Electrochemical Catalysis. Nano Res. 2013, 6, 571–580.

29

Mao, J. J.; Liu, Y. X.; Chen, Z.; Wang, D. S.; Li, Y. D. Bimetallic Pd–Cu Nanocrystals and Their Tunable Catalytic Properties. Chem. Commun. 2014, 50, 4588–4591.

30

Nosheen, F.; Zhang, Z. C.; Xiang, G. L.; Xu, B.; Yang, Y.; Saleem, F.; Xu, X. B.; Zhang, J. C.; Wang, X. Three- dimensional Hierarchical Pt-Cu Superstructures. Nano Res. 2015, 8, 832–838

31

Park, K. -H.; Lee, Y. W.; Kang, S. W.; Han, S. W. A Facile One-Pot Synthesis and Enhanced Formic Acid Oxidation of Monodisperse Pd–Cu Nanocatalysts. Chem. Asian J. 2011, 6, 1515–1519.

32

Zhang, L.; Hou, F.; Tan, Y. W. Shape-Tailoring of CuPd Nanocrystals for Enhancement of Electro-Catalytic Activity in Oxygen Reduction Reaction. Chem. Commun. 2012, 48, 7152–7154.

33

Gao, Q.; Ju, Y. M.; An, D.; Gao, M. R.; Cui, C. H.; Liu, J. W.; Cong, H. P.; Yu, S. H. Shape-Controlled Synthesis of Monodisperse PdCu Nanocubes and Their Electrocatalytic Properties. ChemSusChem 2013, 6, 1878–1882.

34

Mohl, M.; Dobo, D.; Kukovecz, A.; Konya, Z.; Kordas, K.; Wei, J.; Vajtai, R.; Ajayan, P. M. Formation of CuPd and CuPt Bimetallic Nanotubes by GalvanicReplacement Reaction. J. Phys. Chem. C 2011, 115, 9403–9409.

35

Gao, C. B.; Hu, Y. X.; Wang, M. S.; Chi, M. F.; Yin, Y. D. Fully Alloyed Ag/Au Nanospheres: Combining the Plasmonic Property of Ag with the Stability of Au. J. Am. Chem. Soc. 2014, 136, 7474–7479.

36

Xia, X. H.; Xie, S. F.; Liu, M. C.; Peng, H. -C.; Lu, N.; Wang, J. G.; Kim, M. J.; Xia, Y. N. On the Role of Surface Diffusion in Determining the Shape or Morphology of Noble-Metal Nanocrystals. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 6669–6673.

37

Liu, M. C.; Zheng, Y. Q.; Zhang, L.; Guo, L. J.; Xia, Y. N. Transformation of Pd Nanocubes into Octahedra with Controlled Sizes by Maneuvering the Rates of Etching and Regrowth. J. Am. Chem. Soc. 2013, 135, 11752–11755.

38

Xie, S. F.; Zhang, H.; Lu, N.; Jin, M. S.; Wang, J. G.; Kim, M. J.; Xie, Z. X.; Xia, Y. N. Synthesis of Rhodium Concave Tetrahedrons by Collectively Manipulating the Reduction Kinetics, Facet-Selective Capping, and Surface Diffusion. Nano Lett. 2013, 13, 6262–6268.

39

Inzelt, G. In Encyclopedia of Electrochemistry; Bard, A. J.; Stratmann, M.; Scholz, F.; Pickett, Ch., Eds.; Wiley-VCH: Weinheim, 2006; Vol. 7, 42–43.

40

Inzelt, G. In Encyclopedia of Electrochemistry; Bard, A. J.; Stratmann, M.; Scholz, F.; Pickett, Ch., Eds.; Wiley-VCH: Weinheim, 2006; Vol. 7, 511.

41

Denton, A. R.; Ashcroft, N. W. Vegard's Law. Phys. Rev. A 1991, 43, 3161–3164.

42

Langille, M. R.; Personick, M. L.; Zhang, J.; Mirkin, C. A. Defining Rules for the Shape Evolution of Gold Nanoparticles. J. Am. Chem. Soc. 2012, 134, 14542–14554.

43

Xia, X. H.; Zeng, J.; Oetjen, L. K.; Li, Q. G.; Xia, Y. N. Quantitative Analysis of the Role Played by Poly(vinylpyrrolidone) in Seed-Mediated Growth of Ag Nanocrystals. J. Am. Chem. Soc. 2012, 134, 1793–1801.

44

Niesz, K.; Grass, M.; Somorjai, G. A. Precise Control of the Pt Nanoparticle Size by Seeded Growth UsingEO13PO30EO13 Triblock Copolymers as Protective Agents. Nano Lett. 2005, 5, 2238–2240.

45

Zhang, D. Q.; Wang, R. R.; Wen, M. C.; Weng, D.; Cui, X.; Sun, J.; Li, H. X.; Lu, Y. F. Synthesis of Ultralong Copper Nanowires for High-Performance Transparent Electrodes. J. Am. Chem. Soc. 2012, 134, 14283–14286.

46

Langille, M. R.; Zhang, J.; Mirkin, C. A. Plasmon-Mediated Synthesis of Heterometallic Nanorods and Icosahedra. Angew. Chem. Int. Ed. 2011, 50, 3543–3547.

47

Ming, T.; Feng, W.; Tang, Q.; Wang, F.; Sun, L. D.; Wang, J. F.; Yan, C. H. Growth of Tetrahexahedral Gold Nanocrystals with High-Index Facets. J. Am. Chem. Soc. 2009, 131, 16350–16351.

48

Casale, A.; Robertis, A. D.; Stefano, C. D.; Gianguzze, A.; Patanè, G.; Rigano, C.; Sammartano, S. Thermodynamic Parameters for the Formation of Glycine Complexes with Magnesium(Ⅱ), Calcium(Ⅱ), Lead(Ⅱ), Manganese(Ⅱ), Cobalt(Ⅱ), Nickel(Ⅱ), Zinc(Ⅱ) and Cadmium(Ⅱ) at Different Temperatures and Ionic Strengths, with Particular Reference to Natural Fluid Conditions. Thermochim. Acta 1995, 255, 109–141.

49

Xiong, Y. J.; McLellan, J. M.; Chen, J. Y.; Yin, Y. D.; Li, Z. Y.; Xia, Y. N. Kinetically Controlled Synthesis of Triangular and Hexagonal Nanoplates of Palladium and Their SPR/SERS Properties. J. Am. Chem. Soc. 2005, 127, 17118–17127.

50

Wang, C. Y.; Lin, C. K.; Zhang, L. H.; Quan, Z. W.; Sun, K.; Zhao, B.; Wang, F.; Porter, N.; Wang, Y. X.; Fang, J. Pt3Co Concave Nanocubes: Synthesis, Formation Understanding, and Enhanced Catalytic Activity toward Hydrogenation of Styrene. Chem. Eur. J. 2014, 20, 1753–1759.

51

Yin, A. X.; Min, X. Q.; Zhu, W.; Liu, W. C.; Zhang, Y. W.; Yan, C. H. Pt-Cu and Pt-Pd-Cu Concave Nanocubes with High-Index Facets and Superior Electrocatalytic Activity. Chem. Eur. J. 2012, 18, 777–782.

52

Huang, X. Q.; Tang, S. H.; Zhang, H. H.; Zhou, Z. Y.; Zheng, N. F. Controlled Formation of Concave Tetrahedral/ Trigonal Bipyramidal Palladium Nanocrystals. J. Am. Chem. Soc. 2009, 131, 13916–13917.

53

Dai, Y.; Mu, X. L.; Tan, Y. M.; Lin, K. Q.; Yang, Z. L.; Zheng, N. F.; Fu, G. Carbon Monoxide-Assisted Synthesis of Single-Crystalline Pd Tetrapod Nanocrystals through Hydride Formation. J. Am. Chem. Soc. 2012, 134, 7073–7080.

54

Chen, Y. -H.; Hung, H. -H.; Huang, M. H. Seed-Mediated Synthesis of Palladium Nanorods and Branched Nanocrystals and Their Use as Recyclable Suzuki Coupling Reaction Catalysts. J. Am. Chem. Soc. 2009, 131, 9114–9121.

55

Chen, M. S.; Kumar, D.; Yi, C. -W.; Goodman, D. W. The Promotional Effect of Gold in Catalysis by Palladium-Gold. Science 2005, 310, 291–293.

56

Narayanan R.; El-Sayed M. A. Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution. Nano Lett. 2004, 4, 1343–1348.

57

Shokouhimehr, M.; Kim, T.; Jun, S. W.; Shin, K.; Jang, Y. J.; Kim, B. H.; Kim, J.; Hyeon, T. Magnetically Separable Carbon Nanocomposite Catalysts for Efficient nitroarene Reduction and Suzuki Reactions. Appl. Catal. A: Gen. 2014, 476, 133–139.

58

Zeng, J.; Zhang, Q.; Chen, J. Y.; Xia, Y. N. A Comparison Study of the Catalytic Properties of Au-Based Nanocages, Nanoboxes, and Nanoparticles. Nano Lett. 2010, 10, 30–35.

59

Hong, J. W.; Kim, D.; Lee, Y. W.; Kim, M.; Kang, S. W.; Han, S. W. Atomic-Distribution-Dependent Electrocatalytic Activity of Au-Pd Bimetallic Nanocrystals. Angew. Chem. Int. Ed. 2011, 123, 9038–9042.

Nano Research
Pages 2415-2430
Cite this article:
Zhang L, Su H, Sun M, et al. Concave Cu-Pd bimetallic nanocrystals: Ligand-based Co-reduction and mechanistic study. Nano Research, 2015, 8(7): 2415-2430. https://doi.org/10.1007/s12274-015-0752-8

772

Views

32

Crossref

N/A

Web of Science

32

Scopus

4

CSCD

Altmetrics

Received: 20 December 2014
Revised: 08 February 2015
Accepted: 23 February 2015
Published: 12 May 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return