AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layer

Weibo Yan1Yunlong Li1Yu Li2Senyun Ye1Zhiwei Liu1Shufeng Wang2( )Zuqiang Bian1( )Chunhui Huang1
State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
State Key Laboratory for Mesoscopic PhysicsDepartment of PhysicsPeking UniversityBeijing100871China
Show Author Information

Graphical Abstract

Abstract

Ultrathin polythiophene films prepared via electrochemical polymerization is successfully used as the hole-transporting material, substituting conventional HTM-PEDOT: PSS, in planar p-i-n CH3NH3PbI3 perovskite-based solar cells, affording a series of ITO/polythiophene/CH3NH3PbI3/C60/BCP/Ag devices. The ultrathin polythiophene film possesses good transmittance, high conductivity, a smooth surface, high wettability, compatibility with PbI2 DMF solution, and an energy level matching that of the CH3NH3PbI3 perovskite material. A promising power conversion efficiency of about 15.4%, featuring a high fill factor of 0.774, open voltage of 0.99 V, and short-circuit current density of 20.3 mA·cm-2 is obtained. The overall performance of the devices is superior to that of cells using PEDOT: PSS. The differences of solar cells with different hole-transfer materials in charge recombination, charge transport and transfer, and device stability are further investigated and demonstrate that polythiophene is a more effective and promising hole-transporting material. This work provides a simple, prompt, controllable, and economic approach for the preparation of an effective hole-transporting material, which undoubtedly offers an alternative method in the future industrial production of perovskite solar cells.

Electronic Supplementary Material

Download File(s)
12274_2015_755_MOESM1_ESM.pdf (4.4 MB)

References

1

Liu, D. Y.; Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 2014, 8, 133-138.

2

Wang, J. T. W.; Ball, J. M.; Barea, E. M.; Abate, A.; Alexander-Webber, J. A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H. J. et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 2014, 14, 724-730.

3

Jeon, N. J.; Lee, H. G.; Kim, Y. C.; Seo, J.; Noh, J. H.; Lee, J.; Seok, S. I. O-methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. J. Am. Chem. Soc. 2014, 136, 7837-7840.

4

Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542-546.

5

Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C. CH3NH3PbI3 perovskite/fullerene planar- heterojunction hybrid solar cells. Adv. Mater. 2013, 25, 3727-3732.

6

Pang, S. P.; Hu, H.; Zhang, J. L.; Lv, S. L.; Yu, Y. M.; Wei, F.; Qin, T. S.; Xu, H. X.; Liu, Z. H.; Cui, G. L. NH2CH= NH2PbI3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 2014, 26, 1485-1491.

7

Bi, D. Q.; Yang, L.; Boschloo, G.; Hagfeldt, A.; Johansson, E. M. J. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J. Phys. Chem. Lett. 2013, 4, 1532-1536.

8

Christians, J. A.; Fung, R. C. M.; Kamat, P. V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 2014, 136, 758-764.

9

Wu, Z. W.; Bai, S.; Xiang, J.; Yuan, Z. C.; Yang, Y. G.; Cui, W.; Gao, X. Y.; Liu, Z.; Jin, Y. Z.; Sun, B. Q. Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale 2014, 6, 10505-10510.

10

Yeo, J. S.; Kang, R.; Lee, S.; Jeon, Y. J.; Myoung, N.; Lee, C. L.; Kim, D. Y.; Yun, J. M.; Seo, Y. H.; Kim, S. S. et al. Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy 2015, 12, 96-104.

11

Bi, D. Q.; Moon, S. J.; Häggman, L.; Boschloo, G.; Yang, L.; Johansson, E. M. J.; Nazeeruddin, M. K.; Grätzel, M.; Hagfeldt, A. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Adv. 2013, 3, 18762- 18766.

12

Min, J.; Zhang, Z. G.; Hou, Y.; Quiroz, C. O. R.; Przybilla, T.; Bronnbauer, C.; Guo, F.; Forberich, K.; Azimi, H.; Ameri, T. et al. Interface engineering of perovskite hybrid solar cells with solution-processed perylene-diimide heterojunctions toward high performance. Chem. Mater. 2015, 27, 227-234.

13
Azimi, H.; Ameri, T.; Zhang, H.; Hou, Y.; Quiroz, C. O. R.; Min, J.; Hu, M. Y.; Zhang, Z. G.; Przybilla, T.; Matt, G. J. et al. A universal interface layer based on an amine-functionalized fullerene derivative with dual functionality for efficient solution processed organic and perovskite solar cells. Adv. Energy Mater. , in press, DOI: 10.1002/aenm.201401692.https://doi.org/10.1002/aenm.201401692
14

Habisreutinger, S. N.; Leijtens, T.; Eperon, G. E.; Stranks, S. D.; Nicholas, R. J.; Snaith, H. J. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 2014, 14, 5561-5568.

15

Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.; Chang, J. A.; Lee, Y. H.; Kim, H.; Sarkar, A.; Nazeeruddin, M. K. et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 2013, 7, 486-491.

16

Jeon, N. J.; Lee, J.; Noh, J. H.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. I. Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole- transporting materials. J. Am. Chem. Soc. 2013, 135, 19087-19090.

17

Zhou, H.; Hu X.; Lu, Y. FT-IR of copolymer film and multiple film of thiophene and 3-methylthiophene. Chinese Journal of Light Scattering 2004, 15, 311-315.

18

Yan, W. B.; Li, Y. L.; Sun, W. H.; Peng, H. T.; Ye, S. Y.; Liu, Z. W.; Bian, Z. Q.; Huang, C. H. High-performance hybrid perovskite solar cells with polythiophene as hole- transporting layer via electrochemical polymerization. RSC Adv. 2014, 4, 33039-33046.

19

Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341-344.

20

Kyaw, A. K. K.; Wang, D. H.; Gupta, V.; Leong, W. L.; Ke, L.; Bazan, G. C.; Heeger, A. J. Intensity dependence of current-voltage characteristics and recombination in high- efficiency solution-processed small-molecule solar cells. ACS Nano 2013, 7, 4569-4577.

21

Kim, H. S.; Mora-Sero, I.; Gonzalez-Pedro, V.; Fabregat- Santiago, F.; Juarez-Perez, E. J.; Park, N. G.; Bisquert, J. Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun. 2013, 4, 2242-2248.

22

Zheng, L. L.; Chung, Y. H.; Ma, Y. Z.; Zhang, L. P.; Xiao, L. X.; Chen, Z. J.; Wang, S. F.; Qu, B.; Gong, Q. H. A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability. Chem. Commun. 2014, 50, 11196-11199.

Nano Research
Pages 2474-2480
Cite this article:
Yan W, Li Y, Li Y, et al. Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layer. Nano Research, 2015, 8(8): 2474-2480. https://doi.org/10.1007/s12274-015-0755-5

872

Views

92

Crossref

N/A

Web of Science

95

Scopus

4

CSCD

Altmetrics

Received: 16 January 2015
Revised: 16 February 2015
Accepted: 17 February 2015
Published: 29 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return