AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced Li+ storage properties of few-layered MoS2-C composite microspheres embedded with Si nanopowder

Seung Ho ChoiYun Chan Kang( )
Department of Materials Science and EngineeringKorea UniversityAnam-DongSeongbuk-GuSeoul 136-713Republic of Korea
Show Author Information

Graphical Abstract

Abstract

A few-layered MoS2-C composite material is studied as a supporting material for silicon nanopowder. Microspheres of the few-layered MoS2-C composite embedded with 30 wt.% Si nanopowder are prepared by one-pot spray pyrolysis. The Si nanopowder particles with high capacity are completely surrounded by the few-layered MoS2-C composite matrix. The discharge capacities of the MoS2-C composite microspheres with and without 30 wt.% Si nanopowder after 100 cycles are 1, 020 and 718 mAh·g-1 at a current density of 1, 000 mA·g-1, respectively. The spherical morphology of the MoS2-C composite microspheres embedded with Si nanopowder is preserved even after 100 cycles because of their high structural stability during cycling. The MoS2-C composite layer prevents the formation of unstable solid-electrolyte interface (SEI) layers on the Si nanopowder. Furthermore, as the MoS2-C composite matrix exhibits high capacity and excellent cycling performance, these characteristics are also reflected in the MoS2-C composite microspheres embedded with 30 wt.% Si nanopowder.

Electronic Supplementary Material

Download File(s)
12274_2015_757_MOESM1_ESM.pdf (2.1 MB)

References

1

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.

2

Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J. Functional materials for rechargeable batteries. Adv. Mater. 2011, 23, 1695-1715.

3

Cho, J. Porous Si anode materials for lithium rechargeable batteries. J. Mater. Chem. 2010, 20, 4009-4014.

4

Szczech, J. R.; Jin, S. Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 2011, 4, 56-72.

5

Magasinki, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353-358.

6

McDowell, M. T.; Lee, S. W.; Nix, W. D.; Cui, Y. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 2013, 25, 4966-4984.

7

Choi, N. S.; Chen, Z. h.; Freunberger, S. A.; Ji, X. l.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Challenges facing lithium batteries and electrical double- layer capacitors. Angew. Chem. Int. Ed. 2012, 51, 9994-10024.

8

Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414-429.

9

Li, X. L.; Zhi, L. J. Managing voids of Si anodes in lithium ion batteries. Nanoscale 2013, 5, 8864-8873.

10

Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 2014, 4, 1300882.

11

Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 2012, 6, 1522-1531.

12

Huang, X. K.; Yang, J.; Mao, S.; Chang, J. B.; Hallac, P. B.; Fell, C. R.; Metz, B.; Jiang, J. W.; Hurley, P. T.; Chen, J. H. Controllable synthesis of hollow Si anode for long-cycle- life lithium-ion batteries. Adv. Mater. 2014, 26, 4326-4332.

13

Liang, J. W.; Li, X. N.; Zhu, Y. C.; Guo, C.; Qian, Y. T. Hydrothermal synthesis of nano-silicon from silica sol and its lithium ion batteries property. Nano Res. 2015, 8, 1497-1504.

14

Li, X. L.; Meduri, P.; Chen, X. L.; Qi, W.; Engelhard, M. H.; Xu, W.; Ding, F.; Xiao, J.; Wang, W.; Wang, C. M. et al. Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes. J. Mater. Chem. 2012, 22, 11014- 11017.

15

Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187-192.

16

Park, Y.; Choi, N. S.; Park, S.; Woo, S. H.; Sim, S.; Jang, B. Y.; Oh, S. M.; Park, S.; Cho, J.; Lee, K. T. Si-encapsulating hollow carbon electrodes via electroless etching for lithium- ion batteries. Adv. Energy Mater. 2013, 3, 206-212.

17

Karki, K.; Zhu, Y. J.; Liu, Y.H.; Sun, C. F.; Hu, L. B.; Wang, Y. H.; Wang, C. S.; Cumings, J. Hoop-strong nanotubes for battery electrodes. ACS Nano 2013, 7, 8295-8302.

18

Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844-3847.

19

Ge, M. Y.; Rong, J. P.; Fang, X.; Zhou, C. W. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 2012, 12, 2318-2323.

20

Ge, M. Y.; Rong, J. P.; Fang, X.; Zhang, A. Y.; Lu, Y. H.; Zhou, C. W. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 2013, 6, 174-181.

21

Yoo, J. K.; Kim, J.; Jung, Y. S.; Kang, K. Scalable fabrication of silicon nanotubes and their application to energy storage. Adv. Mater. 2012, 24, 5452-5456.

22

Kasavajjula, U.; Wang, C. S.; Appleby, A. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 163, 1003-1039.

23

Lai, J.; Guo, H. J.; Wang, Z. X.; Li, X. H.; Zhang, X. P.; Wu, F. X.; Yue, P. Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries. J. Alloys Compd. 2012, 530, 30-35.

24

Holzapfel, M.; Buqa, H.; Scheifele, W.; Novák, P.; Petrat, F. M. A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. Chem. Commun. 2005, 1566-1568.

25

Wen, Z. S.; Yang, J.; Wang, B. F.; Wang, K.; Liu, Y. High capacity silicon/carbon composite anode materials for lithium ion batteries. Electrochem. Commun. 2003, 5, 165-168.

26

Su, L. W.; Zhou, Z.; Ren, M. M. Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries. Chem. Commun. 2010, 46, 2590-2592.

27

Xu, Y. H.; Zhu, Y. J.; Wang, C. S. Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 9751-9757.

28

Jung, D. S.; Hwang, T. H.; Park, S. B.; Choi, J. W. Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries. Nano Lett. 2013, 13, 2092-2097.

29

Fuchsbichler, B.; Stangl, C.; Kren, H.; Uhlig, F.; Koller, S. High capacity graphite-silicon composite anode material for lithium-ion batteries. J. Power Sources 2011, 196, 2889-2892.

30

Park, J. B.; Lee, K. H.; Jeon, Y. J.; Lim, S. H.; Lee, S. M. Si/C composite lithium-ion battery anodes synthesized using silicon nanoparticles from porous silicon. Electrochim. Acta 2014, 133, 73-81.

31

Wang, B.; Li, X. L.; Zhang, X. F.; Luo, B.; Jin, M. H.; Liang, M. H.; Dayeh, S. A.; Picraux, S. T.; Zhi, L. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. ACS Nano 2013, 7, 1437-1445.

32

Wang, W.; Ruiz, I.; Ahmed, K.; Bay, H. H.; George, A. S.; Wang, J.; Butler, J.; Ozkan, M.; Ozkan, C. S. Silicon decorated cone shaped carbon nanotube clusters for lithium ion battery anodes. Small 2014, 10, 3389-3396.

33

Lin, H. J.; Weng, W.; Ren, J.; Qiu, L. B.; Zhang, Z. T.; Chen, P. N.; Chen, X. L.; Deng, J.; Wang, Y. G.; Peng, H. S. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv. Mater. 2014, 26, 1217-1222.

34

Chang, J. B.; Huang, X. K.; Zhou, G. H.; Cui, S. M.; Hallac, P. B.; Jiang, J. W.; Hurley, P. T.; Chen, J. H. Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high- performance lithium-ion battery anode. Adv. Mater. 2014, 26, 758-764.

35

Luo, J. Y.; Zhao, X.; Wu, J. S.; Jang, H. D.; Kung, H. H.; Huang, J. X. Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. J. Phys. Chem. Lett. 2012, 3, 1824-1829.

36

Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C. M.; Cui, Y. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 2012, 12, 3315-3321.

37

Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364-5457.

38

Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166-5180.

39

Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, E170-E192.

40

Armstrong, M. J.; O'Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res. 2014, 7, 1-62.

41

An, Q. Y.; Lv, F.; Liu, Q. Q.; Han, C. H.; Zhao, K. N.; Sheng, J. Z.; Wei, Q. L.; Yan, M. Y.; Mai, L. Q. Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett. 2014, 14, 6250-6256.

42

Wang, H.; Feng, H. B.; Li, J. H. Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage. Small 2014, 10, 2165-2181.

43

Huang, X.; Tan, C. L.; Yin, Z. Y.; Zhang, H. 25th anniversary article: Hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 2014, 26, 2185-2204.

44

Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 2014, 7, 209-231.

45

Zhu, C. B.; Mu, X. K.; van Aken, P. A.; Yu, Y.; Maier, J. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 2014, 53, 2152-2156.

46

Hwang, H.; Kim, H.; Cho, J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011, 11, 4826-4830.

47

Wang, Z.; Chen, T.; Chen, W. X.; Chang, K.; Ma, L.; Huang, G. C.; Chen, D. Y.; Lee, J. Y. CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries. J. Mater. Chem. A 2013, 1, 2202-2210.

48

Zhang, Q.; Ge, J. P.; Goebl, J.; Hu, Y. X.; Lu, Z. D.; Yin, Y. D. Rattle-type silica colloidal particles prepared by a surface- protected etching process. Nano Res. 2009, 2, 583-591.

49

Zhang, C. F.; Peng, X.; Guo, Z. P.; Cai, C. B.; Chen, Z. X.; Wexler, D.; Li, S.; Liu, H. K. Carbon-coated SnO2/graphene nanosheets as highly reversible anode materials for lithium ion batteries. Carbon 2012, 50, 1897-1903.

50

Liu, K. K.; Zhang, W. J.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C. Y.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538-1544.

51

Wang, Q.; Li, J. H. Facilitated lithium storage in MoS2 overlayers supported on coaxial carbon nanotubes. J. Phys. Chem. C 2007, 111, 1675-1682.

52

Ko, Y. N.; Kang, Y. C.; Park, S. B. Superior electrochemical properties of MoS2 powders with a MoS2@void@MoS2 configuration. Nanoscale 2014, 6, 4508-4512.

53

Chang, K.; Geng, D. S.; Li, X. F.; Yang, J. L.; Tang, Y. J.; Cai, M.; Li, R. Y.; Sun, X. L. Ultrathin MoS2/nitrogen-doped graphene nanosheets with highly reversible lithium storage. Adv. Energy Mater. 2013, 3, 839-844.

54

Huang, G. C.; Chen, T.; Chen, W. X.; Wang, Z.; Chang, K.; Ma, L.; Huang, F. H.; Chen, D. Y.; Lee, J. Y. Graphene-like MoS2/graphene composites: Cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium. Small 2013, 9, 3693-3703.

55

Liu, H.; Su, D. W.; Zhou, R. F.; Sun, B.; Wang, G. X.; Qiao, S. Z. Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater. 2012, 2, 970-975.

56

Gong, Y. J.; Yang, S. B.; Liu, Z.; Ma, L. L.; Vajtai, R.; Ajayan, P. M. Graphene-network-backboned architectures for high- performance lithium storage. Adv. Mater. 2013, 25, 3979- 3984.

57

Liu, N. A.; Huo, K. F.; McDowell, M. T.; Zhao, J.; Cui, Y. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci. Rep. 2013, 3, 1919.

58

Choi, S. H.; Kang, Y. C. Yolk-shell, hollow, and single- crystalline ZnCo2O4 powders: Preparation using a simple one-pot process and application in lithium-ion batteries. ChemSusChem 2013, 6, 2111-2116.

59

Ko, Y. N.; Park, S. B.; Kang, Y. C. Design and fabrication of new nanostructured SnO2-carbon composite microspheres for fast and stable lithium storage performance. Small 2014, 10, 3240-3245.

Nano Research
Pages 2492-2502
Cite this article:
Choi SH, Kang YC. Enhanced Li+ storage properties of few-layered MoS2-C composite microspheres embedded with Si nanopowder. Nano Research, 2015, 8(8): 2492-2502. https://doi.org/10.1007/s12274-015-0757-3

636

Views

27

Crossref

N/A

Web of Science

27

Scopus

0

CSCD

Altmetrics

Received: 24 November 2014
Revised: 24 February 2015
Accepted: 01 March 2015
Published: 29 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return