AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Cell surface engineering with polyelectrolyte-stabilized magnetic nanoparticles: A facile approach for fabrication of artificial multicellular tissue-mimicking clusters

Maria R. Dzamukova§Ekaterina A. Naumenko§Elvira V. RozhinaAlexander A. TrifonovRawil F. Fakhrullin( )
Bionanotechnology LabInstitute of Fundamental Medicine and BiologyKazan Federal UniversityKreml uramı 18Kazan420008Republic of Tatarstan, Russian Federation

§ Both authors contributed equally to this study.

Show Author Information

Graphical Abstract

Abstract

Regenerative medicine requires new ways to assemble and manipulate cells for fabrication of tissue-like constructs. Here we report a novel approach for cell surface engineering of human cells using polymer-stabilized magnetic nanoparticles (MNPs). Cationic polyelectrolyte-coated MNPs are directly deposited onto cellular membranes, producing a mesoporous semi-permeable layer and rendering cells magnetically responsive. Deposition of MNPs can be completed within minutes, under cell-friendly conditions (room temperature and physiologic media). Microscopy (TEM, SEM, AFM, and enhanced dark-field imaging) revealed the intercalation of nanoparticles into the cellular microvilli network. A detailed viability investigation was performed and suggested that MNPs do not inhibit membrane integrity, enzymatic activity, adhesion, proliferation, or cytoskeleton formation, and do not induce apoptosis in either cancer or primary cells. Finally, magnetically functionalized cells were employed to fabricate viable layered planar (two-cell layers) cell sheets and 3D multicellular spheroids.

Electronic Supplementary Material

Video
12274_2015_759_MOESM2_ESM.avi
Download File(s)
12274_2015_759_MOESM1_ESM.pdf (446.2 KB)

References

1

Ito, A.; Jitsunobu, H.; Kawabe, Y.; Kamihira, M. Construction of heterotypic cell sheets by magnetic force-based 3-D coculture of HepG2 and NIH3T3 cells. J. Biosci. Bioeng. 2007, 104, 371-378.

2

Perea, H.; Aigner, J.; Heverhagen, J. T.; Hopfner, U.; Wintermantel, E. Vascular tissue engineering with magnetic nanoparticles: Seeing deeper. J. Tissue Eng. Regen. Med. 2007, 1, 318-321.

3

Ito, A.; Takizawa, Y.; Honda, H.; Hata, K.; Kagami, H.; Ueda, M.; Kobayashi, T. Tissue engineering using magnetite nanoparticles and magnetic force: Heterotypic layers of cocultured hepatocytes and endothelial cells. Tissue Eng. 2004, 10, 833-840.

4

Shimizu, K.; Ito, A.; Arinobe, M.; Murase, Y.; Iwata, Y.; Narita, Y.; Kagami, H.; Ueda, M.; Honda, H. Effective cell- seeding technique using magnetite nanoparticles and magnetic force onto decellularized blood vessels for vascular tissue engineering. J. Biosci. Bioeng. 2007, 103, 472-480.

5

Yamamoto, Y.; Ito, A.; Kato, M.; Kawabe, Y.; Shimizu, K.; Fujita, H.; Nagamori, E.; Kamihira, M. Preparation of artificial skeletal muscle tissues by a magnetic force-based tissue engineering technique. J. Biosci. Bioeng. 2009, 108, 538-543.

6

Ito, A.; Takahashi, T.; Kawabe, Y.; Kamihira, M. Human beta defensin-3 engineered keratinocyte sheets constructed by a magnetic force-based tissue engineering technique. J. Biosci. Bioeng. 2009, 108, 244-247.

7

Mattix, B.; Olsen, T. R.; Gu, Y.; Casco, M.; Herbst, A.; Simionescu, D. T.; Visconti, R.P.; Kornev, K. G.; Alexis, F. Biological magnetic cellular spheroids as building blocks for tissue engineering. Acta Biomater. 2014, 10, 623-629.

8

Mattix, B. M.; Olsen, T. R.; Casco, M.; Reese, L.; Poole, J. T.; Zhang, J.; Visconti, R. P.; Simionescu, A.; Simionescu, D. T.; Alexis, F. Janus magnetic cellular spheroids for vascular tissue engineering. Biomaterials 2014, 35, 949-960.

9

Ho, V. H. B.; Müller, K. H.; Barcza, A.; Chen, R. J.; Slater, N. K. H. Generation and manipulation of magnetic multicellular spheroids. Biomaterials 2010, 31, 3095-3102.

10

Tseng, H.; Balaoing, L. R.; Grigoryan, B.; Raphael, R. M.; Killian, T. C.; Souza, G. R.; Grande-Allen, K. J. A three- dimensional co-culture model of the aortic valve using magnetic levitation. Acta Biomater. 2014, 10, 173-182.

11

Gloria, A.; Russo, T.; D'Amora, U.; Zeppetelli, S.; D'Alessandro, T.; Sandri, M.; Bañobre-López, M.; Piñeiro- Redondo, Y.; Uhlarz, M.; Tampieri, A.; et al. Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering. J. R. Soc. Interface 2013, 10, 20120833.

12

Andreas, K.; Georgieva, R.; Ladwig, M.; Mueller, S.; Notter, M.; Sittinger, M.; Ringe, J. Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking. Biomaterials 2012, 33, 4515-4525.

13

Akiyama, H.; Ito, A.; Kawabe, Y.; Kamihira, M. Genetically engineered angiogenic cell sheets using magnetic force-based gene delivery and tissue fabrication techniques. Biomaterials 2010, 31, 1251-1259.

14

Chaudeurge, A.; Wilhelm, C.; Chen-Tournoux, A.; Farahmand, P.; Bellamy, V.; Autret, G.; Ménager, C.; Hagège, A.; Larghéro, J.; Gazeau, F.; et al. Can magnetic targeting of magnetically labeled circulating cells optimize intramyocardial cell retention? Cell Transpl. 2012, 21, 679-691.

15

Babič, M.; Horák, D.; Trchová, M.; Jendelová, P.; Glogarová, K.; Lesný , P.; Herynek, V.; Hájek, M.; Syková, E. Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjugate Chem. 2008, 19, 740-750.

16

Tomitaka, A.; Koshi, T.; Hatsugai, S.; Yamada, T.; Takemura, Y. Magnetic characterization of surface-coated magnetic nanoparticles for biomedical application. J. Magn. Magn. Mater. 2011, 323, 1398-1403.

17

Kim, J. A.; Choi, J. H.; Kim, M.; Rhee, W. J.; Son, B.; Jung, H. K.; Park, T. H. High-throughput generation of spheroids using magnetic nanoparticles for three-dimensional cell culture. Biomaterials 2013, 34, 8555-8563.

18

Dzamukova, M. R.; Naumenko, E. A.; Zakirova, E. Y.; Dzamukov, R. A.; Shilyagin, P. A.; Ilinskaya, O. N.; Fakhrullin, R. F. Polymer-stabilised magnetic nanoparticles do not affect the viability of magnetically-functionalised cells. Cell. Transpl. Tissue Eng. 2012, 7, 52-56.

19

Zhang, M. L.; Earhart, C.M.; Ooi, C.; Wilson, R.J.; Tang, M.; Wang, S. X. Functionalization of high-moment magnetic nanodisks for cell manipulation and separation. Nano Res. 2013, 6, 745-751.

20

Dzamukova, M. R.; Naumenko, E. A.; Lannik, N. I.; Fakhrullin, R. F. Surface-modified magnetic human cells for scaffold-free tissue engineering. Biomater. Sci. 2013, 1, 810-813.

21

Fakhrullin, R. F.; Paunov, V. N. Fabrication of living cellosomes of rod-like and rhombohedral morphologies based on magnetically responsive templates. Chem. Commun. 2009, 2511-2513.

22

Zhang, D. Y.; Fakhrullin, R. F.; Özmen, M.; Wang, H.; Wang, J.; Paunov, V. N.; Li, G. H.; Huang, W. E. Functionalization of whole-cell bacterial reporters with magnetic nanoparticles. Microb. Biotechnol. 2011, 4, 89-97.

23

Fakhrullin, R. F.; Shlykova, L.V.; Zamaleeva, A. I.; Nurgaliev, D. K.; Osin, Y. N.; García-Alonso, J.; Paunov, V. N. Interfacing living unicellular algae cells with biocompatible polyelectrolyte-stabilised magnetic nanoparticles. Macromol. Biosci. 2010, 10, 1257-1264.

24

Fakhrullin, R. F.; García-Alonso, J.; Paunov, V. N. A direct technique for preparation of magnetically functionalised living yeast cells. Soft Matter 2010, 6, 391-397.

25

Dzamukova, M. R.; Zamaleeva, A. I.; Ishmuchametova, D. G.; Osin, Y. N.; Kiyasov, A. P.; Nurgaliev, D. K.; Ilinskaya, O. N.; Fakhrullin R. F. A direct technique for magnetic functionalization of living human cells. Langmuir 2011, 27, 14386-14393.

26

Wilhelm, C.; Gazeau, F. Universal cell labelling with anionic magnetic nanoparticles. Biomaterials 2008, 29, 3161-3174.

27

Huang, C. -Y.; Ger, T. -R.; Wei, Z. -H.; Lai, M. -F. Compare analysis for the nanotoxicity effects of different amounts of endocytic iron oxide nanoparticles at single cell level. PLoS One 2014, 9, e96550.

28

Liu, S-Y.; Long, L.; Yuan, Z.; Yin, L. -P.; Liu, R. Effect and intracellular uptake of pure magnetic Fe3O4 nanoparticles in the cells and organs of lung and liver. Chin. Med. J. 2009, 122, 1821-1825.

29

Hoskins, C.; Wang, L. J.; Cheng, W. P.; Cuschieri, A. Dilemmas in the reliable estimation of the in-vitro cell viability in magnetic nanoparticle engineering: Which tests and what protocols? Nanoscale Res. Lett. 2012, 7, 77.

30

Luther, E.; Petters, C.; Bulcke, F.; Kaltz, A.; Thiel, K.; Bickmeyer, U.; Dringen, R. Endocytotic uptake of iron oxide nanoparticles by cultured brain microglial cells. Acta Biomater. 2013, 9, 8454-8465.

31

Griffon, G.; Marchal, C.; Merlin, J. L.; Marchal, S.; Parache, R. M.; Bey, P. Radiosensitivity of multicellular tumour spheroids obtained from human ovarian cancers. Eur. J. Cancer 1995, 31, 85-91.

32

Couchman, J. R.; Höök, M.; Rees, D. A.; Timpl, R. Adhesion, growth, and matrix production by fibroblasts on laminin substrates. J. Cell Biol. 1983, 96, 177-183.

33

Konnova, S. A.; Sharipova, I. R.; Demina, T.; Osin, Y. N.; Yarullina, D. R.; Ilinskaya, O. N.; Lvov, Y. M.; Fakhrullin, R. F. Biomimetic cell-mediated three-dimensional assembly of halloysite nanotubes. Chem. Commun. 2013, 49, 4208- 4210.

34

Soenen, S. J.; Himmelreich, U.; Nuytten, N.; Pisanic, T. R.; Ferrari, A.; De Cuyper, M. Intracellular nanoparticle coating stability determines nanoparticle diagnostics efficacy and cell functionality. Small 2010, 6, 2136-2145.

35

Buyukhatipoglu, K.; Clyne, A. M. Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J. Biomed. Mater. Res. 2011, 96A, 186-195.

36

Yoon, S.; Kim, J. A.; Lee, S. H.; Kim, M.; Park, T. H. Droplet-based microfluidic system to form and separate multicellular spheroids using magnetic nanoparticles. Lab Chip 2013, 13, 1522-1528.

37

Lin, R. -Z.; Chu, W. -C.; Chiang, C. -C.; Lai, C. -H.; Chang, H. -Y. Magnetic reconstruction of three-dimensional tissues from multicellular spheroids. Tissue Eng. 2008, 14, 197-205.

38

Walser, R.; Metzger, W.; Görg, A.; Pohlemann, T.; Menger, M. D.; Laschke, M. W. Generation of co-culture spheroids as vascularisation units for bone tissue engineering. Eur. Cells Mater. 2013, 26, 222-233.

39

Carver, K.; Ming, X.; Juliano, R. L. Multicellular tumor spheroids as a model for assessing delivery of oligonucleotides in three dimensions. Mol. Ther. Nucleic Acids 2014, 3, e153.

40

Dufau, I.; Frongia, C.; Sicard, F.; Dedieu, L.; Cordelier, P.; Ausseil, F.; Ducommun, B.; Valette, A. Multicellular tumor spheroid model to evaluate spatio-temporal dynamics effect of chemotherapeutics: Application to the gemcitabine/CHK1 inhibitor combination in pancreatic cancer. BMC Cancer 2012, 12, 15-26.

41

Kunz-Schughart, L. A.; Kreutz, M.; Knuechel, R. Multicellular spheroids: A three-dimensional in vitro culture system to study tumour biology. Int. J. Exp. Pathol. 1998, 79, 1-23.

42

Xia, L.; Sakban, R. B.; Qu, Y. H.; Hong, X.; Zhang, W. X.; Nugraha, B.; Tong, W. H.; Ananthanarayanan, A.; Zheng, B.; Chau, I. Y. -Y.; et al. Tethered spheroids as an in vitro hepatocyte model for drug safety screening. Biomaterials 2012, 33, 2165-2176.

43

Breslin, S.; O'Driscoll L. Three-dimensional cell culture: The missing link in drug discovery. Drug Discov. Today 2013, 18, 240-249.

44

Chan, H. F.; Zhang, Y.; Ho, Y. -P.; Chiu, Y. -L.; Jung, Y.; Leong, K. W. Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci. Rep. 2013, 3, 3462.

45

Mahmoudi, M.; Simchi, A.; Milani, A. S.; Stroeve, P. Cell toxicity of superparamagnetic iron oxide nanoparticles. J. Colloid Interface Sci. 2009, 336, 510-518.

46

Berry, C. C.; Wells, S.; Charles, S.; Curtis, A. S. G. Dextran and albumin derivatised iron oxide nanoparticles: Influence on fibroblasts in vitro. Biomaterials 2003, 24, 4551-4557.

Nano Research
Pages 2515-2532
Cite this article:
Dzamukova MR, Naumenko EA, Rozhina EV, et al. Cell surface engineering with polyelectrolyte-stabilized magnetic nanoparticles: A facile approach for fabrication of artificial multicellular tissue-mimicking clusters. Nano Research, 2015, 8(8): 2515-2532. https://doi.org/10.1007/s12274-015-0759-1

681

Views

6

Downloads

61

Crossref

N/A

Web of Science

63

Scopus

2

CSCD

Altmetrics

Received: 12 January 2015
Revised: 25 February 2015
Accepted: 02 March 2015
Published: 29 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return