AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synthesis of gold/rare-earth-vanadate core/shell nanorods for integrating plasmon resonance and fluorescence

Jiahong Wang1,§Hao Huang1,§Daquan Zhang1Ming Chen1Yafang Zhang1Xuefeng Yu1,2( )Li Zhou1( )Ququan Wang1,3( )
Department of PhysicsKey Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and School of Physics and TechnologyWuhan UniversityWuhan430072China
Guangdong Key Laboratory of NanomedicineCAS Key Lab of Health InformaticsInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
Institute for Advanced StudyWuhan UniversityWuhan430072China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The nanoscale core/shell heterostructure is a particularly efficient motif to combine the promising properties of plasmonic materials and rare-earth compounds; however, there remain significant challenges in the synthetic control due to the large interfacial energy between these two intrinsically unmatched materials. Herein, we report a synthetic route to grow rare-earth-vanadate shells on gold nanorod (AuNR) cores. After modifying the AuNR surface with oleate through a surfactant exchange, well-packaged rare-earth oxide (e.g., Gd2O3: Eu) shells are grown on AuNRs as a result of the multiple roles of oleate. Furthermore, the composition of the shell has been altered from oxide to vanadate (GdVO4: Eu) using an anion exchange method. Owing to the carefully designed strategy, the AuNR cores maintain the morphology during the synthesis process; thus, the final Au/GdVO4: Eu core/shell NRs exhibit strong absorption bands and high photothermal efficiency. In addition, the Au/GdVO4: Eu NRs exhibit bright Eu3+ fluorescence with quantum yield as high as ~17%; bright Sm3+ and Dy3+ fluorescence can also be obtained by changing the lanthanide doping in the oxide formation. Owing to the attractive integration of the plasmonic and fluorescence properties, such core/shell heterostructures will find particular applications in a wide array of areas, from biomedicine to energy.

Electronic Supplementary Material

Download File(s)
12274_2015_761_MOESM1_ESM.pdf (5 MB)

References

1

Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740-2779.

2

Feng, D. Q.; Liu, G. L.; Zheng, W. J.; Liu, J.; Chen, T. F.; Li, D. A highly selective and sensitive on-off sensor for silver ions and cysteine by light scattering technique of DNA- functionalized gold nanoparticles. Chem. Commun. 2011, 47, 8557-8559.

3

Wang, F.; Li, C. H.; Chen, H. J.; Jiang, R. B.; Sun, L. D.; Li, Q.; Wang, J. F.; Yu, J. C.; Yan, C. H. Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 2013, 135, 5588-5601.

4

Jing, H.; Zhang, Q. F.; Large, N.; Yu, C. M.; Blom, D. A.; Nordlander, P.; Wang, H. Tunable plasmonic nanoparticles with catalytically active high-index facets. Nano Lett. 2014, 14, 3674-3682.

5

Green, M. A.; Pillai, S. Harnessing plasmonics for solar cells. Nat. Photonics 2012, 6, 130-132.

6

Kulkarni, A. P.; Noone, K. M.; Munechika, K.; Guyer, S. R.; Ginger, D. S. Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Lett. 2010, 10, 1501-1505.

7

Zeng, J.; Huang, J. L.; Liu, C.; Wu, C. H.; Lin, Y.; Wang, X. P.; Zhang, S. Y.; Hou, J. G.; Xia, Y. N. Gold-based hybrid nanocrystals through heterogeneous nucleation and growth. Adv. Mater. 2010, 22, 1936-1940.

8

Li, P.; Wei, Z.; Wu, T.; Peng, Q.; Li, Y. D. Au-ZnO hybrid nanopyramids and their photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 5660-5663.

9

Seh, Z. W.; Liu, S. H.; Zhang, S. Y.; Bharathi, M.; Ramanarayan, H.; Low, M.; Shah, K. W.; Zhang, Y. W.; Han, M. Y. Anisotropic growth of titania onto various gold nanostructures: Synthesis, theoretical understanding, and optimization for catalysis. Angew. Chem. Int. Ed. 2011, 50, 10140-10143.

10

Liu, X.; Lee, C.; Law, W. C.; Zhu, D. W.; Liu, M. X.; Jeon, M.; Kim, J.; Prasad, P. N.; Kim, C.; Swihart, M. T. Au- Cu2-xSe heterodimer nanoparticles with broad localized surface plasmon resonance as contrast agents for deep tissue imaging. Nano Lett. 2013, 13, 4333-4339.

11

Meng, X. G.; Fujita, K.; Moriguchi, Y.; Zong, Y. H.; Tanaka, K. Plasmonics: Metal-dielectric core-shell nanoparticles: Advanced plasmonic architectures towards multiple control of random lasers. Adv. Optical Mater. 2013, 1, 573-580.

12

Zhang, J. T.; Tang, Y.; Lee, K.; Ouyang, M. Tailoring light- matter-spin interactions in colloidal hetero-nanostructures. Nature 2010, 466, 91-95.

13

Baek, S. W.; Park, G.; Noh, J.; Cho, C.; Lee, C. H.; Seo, M. K.; Song, H.; Lee, J. Y. Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells. ACS Nano 2014, 8, 3302-3312.

14

Zhang, L.; Blom, D. A.; Wang, H. Au-Cu2O core-shell nanoparticles: A hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties. Chem. Mater. 2011, 23, 4587-4598.

15

Li, B. X.; Gu, T.; Ming, T.; Wang, J. X.; Wang, P.; Wang, J. F.; Yu, J. C. (Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light. ACS Nano, 2014, 8, 8152-8162.

16

Sun, Z. H.; Yang, Z.; Zhou, J. H.; Yeung, M. H.; Ni, W. H.; Wu, H. K.; Wang, J. F. A general approach to the synthesis of gold-metal sulfide core-shell and heterostructures. Angew. Chem. Int. Ed. 2009, 48, 2881-2885.

17

Sun, H.; He, J. T.; Wang, J. Y.; Zhang, S. Y.; Liu, C. C.; Sritharan, T.; Mhaisalkar, S.; Han, M. Y.; Wang, D.; Chen, H. Y. Investigating the multiple roles of polyvinylpyrrolidone for a general methodology of oxide encapsulation. J. Am. Chem. Soc. 2013, 135, 9099-9110.

18

Zhang, J. T.; Tang, Y.; Lee, K.; Ouyang, M. Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science 2010, 327, 1634-1638.

19

Li, M.; Yu, X. F.; Liang, S.; Peng, X. N.; Yang, Z. J.; Wang, Y. L.; Wang, Q. Q. Synthesis of Au-CdS core-shell hetero- nanorods with efficient exciton-plasmon interactions. Adv. Funct. Mater. 2011, 21, 1788-1794.

20

Gai, S. L.; Li, C. X.; Yang, P. P.; Lin, J. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 2014, 114, 2343-2389.

21

Wang, F.; Liu, X. G. Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation. Acc. Chem. Res. 2014, 47, 1378-1385.

22

Wang, G. F.; Peng, Q.; Li, Y. D. Lanthanide-doped nanocrystals: Synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 2011, 44, 322-332.

23

Chen, G. Y.; Yang, C. H.; Prasad, P. N. Nanophotonics and nanochemistry: Controlling the excitation dynamics for frequency up- and down-conversion in lanthanide-doped nanoparticles. Acc. Chem. Res. 2013, 46, 1474-1486.

24

Wu, S. W.; Han, G.; Milliron, D. J.; Aloni, S.; Altoe, V.; Talapin, D. V.; Cohen, B. E.; Schuck, P. J. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl. Acad. Sci. USA 2009, 106, 10917-10921.

25

Huignard, A.; Gacoin, T.; Boilot, J. P. Synthesis and luminescence properties of colloidal YVO4: Eu phosphors. Chem. Mater. 2000, 12, 1090-1094.

26

Han, S. Y.; Deng, R. R.; Xie, X. J.; Liu, X. G. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew. Chem. Int. Ed. 2014, 53, 11702-11715.

27

Kannan, P.; Abdul Rahim, F.; Chen, R.; Teng, X.; Huang, L.; Sun, H. D.; Kim, D. H. Au nanorod decoration on NaYF4: Yb/ Tm nanoparticles for enhanced emission and wavelength- dependent biomolecular sensing. ACS Appl. Mater. Interfaces 2013, 5, 3508-3513.

28

Zhang, H.; Li, Y. J.; Ivanov, I. A.; Qu, Y. Q.; Huang, Y.; Duan, X. F. Plasmonic modulation of the upconversion fluorescence in NaYF4: Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chem. Int. Ed. 2010, 49, 2865-2868.

29

Li, Z. Q.; Wang, L. M.; Wang, Z. Y.; Liu, X. H.; Xiong, Y. J. Modification of NaYF4: Yb, Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions. J. Phys. Chem. C 2011, 115, 3291-3296.

30

Zhang, C.; Lee, J. Y. Synthesis of Au nanorod@amine- modified silica@rare-earth fluoride nanodisk core-shell-shell heteronanostructures. J. Phys. Chem. C 2013, 117, 15253- 15259.

31

Zhang, F.; Braun, G. B.; Shi, Y. F.; Zhang, Y. C.; Sun, X. H.; Reich, N. O.; Zhao, D. Y.; Stucky, G. Fabrication of Ag@SiO2@Y2O3: Er nanostructures for bioimaging: Tuning of the upconversion fluorescence with silver nanoparticles. J. Am. Chem. Soc. 2010, 132, 2850-2851.

32

Bao, L. Y.; Li, Z. Q.; Tao, Q. L.; Xie, J. J.; Mei, Y. Y.; Xiong, Y. J. Controlled synthesis of uniform LaF3 polyhedrons, nanorods and nanoplates using NaOH and ligands. Nanotechnology 2013, 24, 145604.

33

Xu, Z. H.; Kang, X. J.; Li, C. X.; Hou, Z. Y.; Zhang, C. M.; Yang, D. M.; Li, G. G.; Lin, J. Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: Hydrothermal synthesis, growing mechanism, and luminescent properties. Inorg. Chem. 2010, 49, 6706- 6715.

34

Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679-2724.

35

Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957-1962.

36

Liu, G. Z.; Conn, C. E.; Drummond, C. J. Lanthanide oleates: Chelation, self-assembly, and exemplification of ordered nanostructured colloidal contrast agents for medical imaging. J. Phys. Chem. B 2009, 113, 15949-15959.

37

Murakami, T.; Nakatsuji, H.; Morone, N.; Heuser, J. E.; Ishidate, F.; Hashida, M.; Imahori, H. Mesoscopic metal nanoparticles doubly functionalized with natural and engineered lipidic dispersants for therapeutics. ACS Nano, 2014, 8, 7370-7376.

38

Ye, X. C.; Gao, Y. Z.; Chen, J.; Reifsnyder, D. C.; Zheng, C.; Murray, C. B. Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. Nano Lett. 2013, 13, 2163-2171.

39

Raiser, D.; Deville, J. Study of XPS photoemission of some gadolinium compounds. J. Electron Spectrosc. Relat. Phenom. 1991, 57, 91-97.

40

Zhang, F.; Shi, Y. F.; Sun, X. H.; Zhao, D. Y.; Stucky, G. D. Formation of hollow upconversion rare-earth fluoride nanospheres: Nanoscale Kirkendall effect during ion exchange. Chem. Mater. 2009, 21, 5237-5243.

41

Jia, Y.; Sun, T. Y.; Wang, J. H.; Huang, H.; Li, P. H.; Yu, X. F.; Chu, P. K. Synthesis of hollow rare-earth compound nanoparticles by a universal sacrificial template method. CrystEngComm 2014, 16, 6141-6148.

42

Wang, F.; Xue, X. J.; Liu, X. G. Multicolor tuning of (Ln, P)-doped YVO4 nanoparticles by single-wavelength excitation. Angew. Chem. Int. Ed. 2008, 47, 906-909.

43

Shen, J.; Sun, L. D.; Zhu, J. D.; Wei, L. H.; Sun, H. F.; Yan, C. H. Biocompatible bright YVO4: Eu nanoparticles as versatile optical bioprobes. Adv. Funct. Mater. 2010, 20, 3708-3714.

44

Liu, T.; Bai, X.; Miao, C.; Dai, Q. L.; Xu, W.; Yu, Y.; Chen, Q. D.; Song, H. W. Yb2O3/Au upconversion nanocomposites with broad-band excitation for solar cells. J. Phys. Chem. C, 2014, 118, 3258-3265.

45

Chen, X.; Xu, W.; Zhu, Y. S.; Zhou, P. W.; Cui, S. B.; Tao, L.; Xu, L.; Song, H. W. Nd2O3/Au nanocomposites: Upconversion broadband emission and enhancement under near-infrared light excitation. J. Mater. Chem. C 2014, 2, 5857-5863.

46

Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111, 3636-3641.

47

Huignard, A.; Buissette, V.; Franville, A. C.; Gacoin, T.; Boilot, J. P. Emission processes in YVO4: Eu nanoparticles. J. Phys. Chem. B 2003, 107, 6754-6759.

48

Sau, T. K.; Murphy, C. J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 2004, 20, 6414-6420.

49

Orendorff, C. J.; Murphy, C. J. Quantitation of metal content in the silver-assisted growth of gold nanorods. J. Phys. Chem. B 2006, 110, 3990-3994.

50

Wang, B. K.; Wang, J. H.; Liu, Q.; Huang, H.; Chen, M.; Li, K. Y.; Li, C. Z.; Yu, X. F.; Chu, P. K. Rose-bengal- conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies. Biomaterials 2014, 35, 1954-1966.

51

Kömpe, K.; Borchert, H.; Storz, J.; Lobo, A.; Adam, S.; Möller, T.; Haase, M. Green-emitting CePO4: Tb/LaPO4 core- shell nanoparticles with 70% photoluminescence quantum yield. Angew. Chem. Int. Ed. 2003, 42, 5513-5516.

Nano Research
Pages 2548-2561
Cite this article:
Wang J, Huang H, Zhang D, et al. Synthesis of gold/rare-earth-vanadate core/shell nanorods for integrating plasmon resonance and fluorescence. Nano Research, 2015, 8(8): 2548-2561. https://doi.org/10.1007/s12274-015-0761-7

755

Views

43

Crossref

N/A

Web of Science

45

Scopus

2

CSCD

Altmetrics

Received: 01 December 2014
Revised: 25 February 2015
Accepted: 04 March 2015
Published: 29 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return