AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ambient synthesis, characterization, and electrochemical activity of LiFePO4 nanomaterials derived from iron phosphate intermediates

Jonathan M. Patete1,§Megan E. Scofield1,§Vyacheslav Volkov2Christopher Koenigsmann1Yiman Zhang1Amy C. Marschilok1,3Xiaoya Wang1,4Jianming Bai5Jinkyu Han2Lei Wang1Feng Wang4Yimei Zhu2Jason A. Graetz4,Stanislaus S. Wong1,2( )
Department of ChemistryState University of New York at Stony BrookStony Brook, NY11794-3400USA
Condensed Matter Physics and Materials Sciences DepartmentBuilding 480Brookhaven National LaboratoryUptonNY11973USA
Department of Materials Science and EngineeringState University of New York at Stony BrookStony Brook, NY11794-2275USA
Sustainable Energy Technologies DepartmentBuilding 815Brookhaven National LaboratoryUptonNY11973USA
National Synchrotron Light Source ⅡBuilding 741Brookhaven National LaboratoryUptonNY11973USA

§ These authors contributed equally to this work.

Present address: Sensors and Materials Laboratory, HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265-4797, USA

Show Author Information

Graphical Abstract

Abstract

LiFePO4 materials have become increasingly popular as a cathode material due to the many benefits they possess including thermal stability, durability, low cost, and long life span. Nevertheless, to broaden the general appeal of this material for practical electrochemical applications, it would be useful to develop a relatively mild, reasonably simple synthesis method of this cathode material. Herein, we describe a generalizable, 2-step methodology of sustainably synthesizing LiFePO4 by incorporating a template-based, ambient, surfactantless, seedless, U-tube protocol in order to generate size and morphologically tailored, crystalline, phase-pure nanowires. The purity, composition, crystallinity, and intrinsic quality of these wires were systematically assessed using transmission electron microscopy (TEM), high-resolution TEM (HRTEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), selected area electron diffraction (SAED), energy dispersive analysis of X-rays (EDAX), and high-resolution synchrotron XRD. From these techniques, we were able to determine that there is an absence of any obvious defects present in our wires, supporting the viability of our synthetic approach. Electrochemical analysis was also employed to assess their electrochemical activity. Although our nanowires do not contain any noticeable impurities, we attribute their less than optimal electrochemical rigor to differences in the chemical bonding between our LiFePO4 nanowires and their bulk-like counterparts. Specifically, we demonstrate for the first time experimentally that the Fe-O3 chemical bond plays an important role in determining the overall conductivity of the material, an assertion which is further supported by recent "first-principles" calculations. Nonetheless, our ambient, solution-based synthesis technique is capable of generating highly crystalline and phase-pure energy-storage-relevant nanowires that can be tailored so as to fabricate different sized materials of reproducible, reliable morphology.

Electronic Supplementary Material

Download File(s)
12274_2015_763_MOESM1_ESM.pdf (3.6 MB)

References

1

Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 1997, 144, 1609-1613.

2

Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho-olivines as positive electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188-1194.

3

Sides, C. R.; Croce, F.; Young, V. Y.; Martin, C. R.; Scrosati, B. A high-rate, nanocomposite LiFePO4/carbon cathode. Electrochem. Solid-State Lett. 2005, 8, A484-A487.

4

Huang, X. J.; Yan, S. J.; Zhao, H. Y.; Zhang, L.; Guo, R.; Chang, C. K.; Kong, X. Y.; Han, H. B. Electrochemical performance of LiFePO4 nanorods obtained from hydrothermal process. Mater. Charact. 2010, 61, 720-725.

5

Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 2002, 1, 123-128.

6

Xu, B.; Qian, D.; Wang, Z.; Meng, Y. S. Recent progress in cathode materials research for advanced lithium ion batteries. Mater. Sci. Eng. : R: Rep. 2012, 73, 51-65.

7

Ellis, B.; Kan, W. H.; Makahnouk, W. R. M.; Nazar, L. F. Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. J. Mater. Chem. 2007, 17, 3248-3254.

8

Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271-4302.

9

Yi, T. F.; Li, X. Y.; Liu, H.; Shu, J.; Zhu, Y. R.; Zhu, R. S. Recent developments in the doping and surface modification of LiFePO4 as cathode material for power lithium ion battery. Ionics 2012, 18, 529-539.

10

Lee, K. T.; Jeong, S.; Cho, J. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries. Acc. Chem. Res. 2013, 46, 1161-1170.

11

Lee, M. H.; Kim, T. H.; Kim, Y. S.; Song, H. K. Precipitation revisited: Shape control of LiFePO4 nanoparticles by combinatorial precipitation. J. Phys. Chem. C 2011, 115, 12255-12259.

12

Zheng, J. C.; Li, X. H.; Wang, Z. X.; Guo, H. J.; Zhou, S. Y. LiFePO4 with enhanced performance synthesized by a novel synthetic route. J. Power Sources 2008, 184, 574-577.

13

Franger, S.; Le Cras, F.; Bourbon, C.; Rouault, H. Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties. J. Power Sources 2003, 119-121, 252-257.

14

Arnold, G.; Garche, J.; Hemmer, R.; Ströbele, S.; Vogler, C.; Wohlfahrt-Mehrens, A. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique. J. Power Sources 2003, 119-121, 247-251.

15

Prosini, P. P.; Carewska, M.; Scaccia, S.; Wisniewski, P.; Passerini, S.; Pasquali, M. A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance. J. Electrochem. Soc. 2002, 149, A886-A890.

16

Kim, J. K.; Choi, J. W.; Chauhan, G. S.; Ahn, J. H.; Hwang, G. C.; Choi, J. B.; Ahn, H. J. Enhancement of electrochemical performance of lithium iron phosphate by controlled sol-gel synthesis. Electrochim. Acta 2008, 53, 8258-8264.

17

Hwang, B. J.; Hsu, K. F.; Hu, S. K.; Cheng, M. Y.; Chou, T. C.; Tsay, S. Y.; Santhanam, R. Template-free reverse micelle process for the synthesis of a rod-like LiFePO4/C composite cathode material for lithium batteries. J. Power Sources 2009, 194, 515-519.

18

Saravanan, K.; Balaya, P.; Reddy, M. V.; Chowdari, B. V. R.; Vittal, J. J. Morphology controlled synthesis of LiFePO4/C nanoplates for Li-ion batteries. Energ. Environ. Sci. 2010, 3, 457-463.

19

Chen, Z. Y.; Zhu, W.; Zhu, H. L.; Zhang, J. L.; Li, Q. F. Electrochemical performances of LiFePO4/C composites prepared by molten salt method. T. Nonferr. Metal. Soc. 2010, 20, 809-813.

20

Liu, X. H.; Wang, J. Q.; Zhang, J. Y.; Yang, S. R. Fabrication and characterization of LiFePO4 nanotubes by a sol-gel-AAO template process. Chinese J. Chem. Phys. 2006, 19, 530-534.

21

Wang, G. X.; Shen, X. P.; Yao, J. One-dimensional nanostructures as electrode materials for lithium-ion batteries with improved electrochemical performance. J. Power Sources 2009, 189, 543-546.

22

Teng, F.; Santhanagopalan, S.; Lemmens, R.; Geng, X.; Patel, P.; Meng, D. D. In situ growth of LiFePO4 nanorod arrays under hydrothermal condition. Solid State Sci. 2010, 12, 952-955.

23

Zhu, C. B.; Yu, Y.; Gu, L.; Weichert, K.; Maier, J. Electrospinning of highly electroactive carbon-coated single-crystalline LiFePO4 nanowires. Angew. Chem. Inter. Ed. 2011, 50, 6278-6282.

24

Koenigsmann, C.; Wong, S. S. One-dimensional noble metal electrocatalysts: A promising structural paradigm for direct methanol fuel cells. Energ. Environ. Sci. 2011, 4, 1161-1176.

25

Mao, Y. B.; Zhang, F.; Wong, S. S. Ambient template-directed synthesis of single-crystalline alkaline-earth metal fluoride nanowires. Adv. Mater. 2006, 18, 1895-1899.

26

Santulli, A. C.; Feygenson, M.; Camino, F. E.; Aronson, M. C.; Wong, S. S. Synthesis and characterization of one-dimensional Cr2O3 nanostructures. Chem. Mater. 2011, 23, 1000-1008.

27

Tiano, A. L.; Koenigsmann, C.; Santulli, A. C.; Wong, S. S. Solution-based synthetic strategies for one-dimensional metal-containing nanostructures. Chem. Commun. 2010, 46, 8093-8130.

28

Zhang, F.; Sfeir, M. Y.; Misewich, J. A.; Wong, S. S. Room-temperature preparation, characterization, and photoluminescence measurements of solid solutions of various compositionally-defined single-crystalline alkaline-earth-metal tungstate nanorods. Chem. Mater. 2008, 20, 5500-5512.

29

Zhang, F.; Wong, S. S. Controlled synthesis of semiconducting metal sulfide nanowires. Chem. Mater. 2009, 21, 4541-4554.

30

Zhou, H. J.; Park, T. J.; Wong, S. S. Synthesis, characterization, and photocatalytic properties of pyrochlore Bi2Ti2O7 nanotubes. J. Mater. Res. 2006, 21, 2941-2947.

31

Zhou, H.; Wong, S. S. A facile and mild synthesis of 1-D ZnO, CuO, and α-Fe2O3 nanostructures and nanostructured arrays. ACS Nano 2008, 2, 944-958.

32

Zhou, H. J.; Zhou, W. P.; Adzic, R. R.; Wong, S. S. Enhanced electrocatalytic performance of one-dimensional metal nanowires and arrays generated via an ambient, surfactantless synthesis. J. Phys. Chem. C 2009, 113, 5460-5466.

33

Fisher, C. A. J.; Hart Prieto, V. M.; Islam, M. S. Lithium battery materials LiMPO4 (M = Mn, Fe, Co, and Ni): Insights into defect association, transport mechanisms, and doping behavior. Chem. Mater. 2008, 20, 5907-5915.

34

Morgan, D.; Van der Ven, A.; Ceder, G. Li Conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) Olivine Materials. Electrochem. Solid-State Lett. 2004, 7, A30-A32.

35

Hong, Y. S.; Ryu, K. S.; Park, Y. J.; Kim, M. G.; Lee, J. M.; Chang, S. H. Amorphous FePO4 as 3 V cathode material for lithium secondary batteries. J. Mater. Chem. 2002, 12, 1870-1874.

36

Kim, S. W.; Ryu, J.; Park, C. B.; Kang, K. Carbon nanotube-amorphous FePO4 core-shell nanowires as cathode material for Li ion batteries. Chem. Commun. 2010, 46, 7409-7411.

37

Liu, Y. L.; Xu, Y. H.; Han, X. G.; Pellegrinelli, C.; Zhu, Y. J.; Zhu, H. L.; Wan, J. Y.; Chung, A. C.; Vaaland, O.; Wang, C. S. et al. Porous amorphous FePO4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes. Nano Lett. 2012, 12, 5664-5668.

38

Patete, J. M.; Peng, X.; Koenigsmann, C.; Xu, Y.; Karn, B.; Wong, S. S. Viable methodologies for the synthesis of high-quality nanostructures. Green Chem. 2011, 13, 482-519.

39

Koenigsmann, C.; Santulli, A. C.; Sutter, E.; Wong, S. S. Ambient, surfactantless synthesis, growth mechanism, and size-dependent electrocatalytic behavior of high-quality, single crystalline palladium nanowires. ACS Nano 2011, 5, 7471-7487.

40

Park, T. J.; Mao, Y. B.; Wong, S. S. Synthesis and characterization of multiferroic BiFeO3 nanotubes. Chem. Commun. 2004, 2708-2709.

41

Zhou, H.; Yiu, Y.; Aronson, M. C.; Wong, S. S. Ambient template synthesis of multiferroic MnWO4 nanowires and nanowire arrays. J. Solid State Chem. 2008, 181, 1539-1545.

42

Koenigsmann, C.; Sutter, E.; Chiesa, T. A.; Adzic, R. R.; Wong, S. S. Highly enhanced electrocatalytic oxygen reduction performance observed in bimetallic palladium-based nanowires prepared under ambient, surfactantless conditions. Nano Lett. 2012, 12, 2013-2020.

43

Singh, S.; Krupanidhi, S. B. Synthesis, structural characterization and ferroelectric properties of Pb0.76Ca0.24TiO3 nanotubes. Mater. Chem. Phys. 2011, 131, 443-448.

44

Hernandez-Sanchez, B. A.; Chang, K. S.; Scancella, M. T.; Burris, J. L.; Kohli, S.; Fisher, E. R.; Dorhout, P. K. Examination of size-induced ferroelectric phase transitions in template synthesized PbTiO3 nanotubes and nanofibers. Chem. Mater. 2005, 17, 5909-5919.

45

Yang, Z.; Huang, Y.; Dong, B.; Li, H. L.; Shi, S. Q. Sol-gel template synthesis and characterization of LaCoO3 nanowires. Appl. Phys. A 2006, 84, 117-122.

46

Kuang, Q.; Lin, Z. W.; Lian, W.; Jiang, Z. Y.; Xie, Z. X.; Huang, R. B.; Zheng, L. S. Syntheses of rare-earth metal oxide nanotubes by the sol-gel method assisted with porous anodic aluminum oxide templates. J. Solid State Chem. 2007, 180, 1236-1242.

47

Zhang, F.; Wong, S. S. Ambient large-scale template-mediated synthesis of high-aspect ratio single-crystalline, chemically doped rare-earth phosphate nanowires for bioimaging. ACS Nano 2009, 4, 99-112.

48

Koenigsmann, C.; Wong, S. S. Tailoring chemical composition to achieve enhanced methanol oxidation reaction and methanol-tolerant oxygen reduction reaction performance in palladium-based nanowire systems. ACS Catal. 2013, 3, 2031-2040.

49

Park, T. J.; Mao, Y. B.; Wong, S. S. Synthesis and Characterization of Multiferroic BiFeO3 Nanotubes. Chem. Commun. 2004, 2708-2709.

50

Koenigsmann, C.; Santulli, A. C.; Gong, K.; Vukmirovic, M. B.; Zhou, W. P.; Sutter, E.; Wong, S. S.; Adzic, R. R. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd-Pt core-shell nanowire catalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2011, 133, 9783-9795.

51

Koenigsmann, C.; Sutter, E.; Adzic, R. R.; Wong, S. S. Size- and composition-dependent enhancement of electrocatalytic oxygen reduction performance in ultrathin palladium-gold (Pd1-xAux) nanowires. J. Phys. Chem. C 2012, 116, 15297-15306.

52

Zhang, F.; Mao, Y. B.; Park, T. J.; Wong, S. S. Green synthesis and property characterization of single-crystalline perovskite fluoride nanorods. Adv. Funct. Mater. 2008, 18, 103-112.

53

Song, Y. N.; Yang, S. F.; Zavalij, P. Y.; Whittingham, M. S. Temperature-dependent properties of FePO4 cathode materials. Mater. Res. Bull. 2002, 37, 1249-1257.

54

Yuan, L. X.; Wang, Z. H.; Zhang, W. X.; Hu, X. L.; Chen, J. T.; Huang, Y. H.; Goodenough, J. B. Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energ. Environ. Sci. 2011, 4, 269-284.

55

Shiratsuchi, T.; Okada, S.; Yamaki, J. I.; Yamashita, S.; Nishida, T. Cathode performance of olivine-type LiFePO4 synthesized by chemical lithiation. J. Power Sources 2007, 173, 979-984.

56

Galoustov, K.; Anthonisen, M.; Ryan, D. H.; MacNeil, D. D. Characterization of two lithiation reactions starting with an amorphous FePO4 precursor. J. Power Sources 2011, 196, 6893-6897.

57

Liu, H. W. Synthesis of nanorods FePO4 via a facile route. J. Nanopart. Res. 2010, 12, 2003-2006.

58

Scaccia, S.; Carewska, M.; Wisniewski, P.; Prosini, P. P. Morphological investigation of sub-micron FePO4 and LiFePO4 particles for rechargeable lithium batteries. Mater. Res. Bull. 2003, 38, 1155-1163.

59

Kandori, K.; Kuwae, T.; Ishikawa, T. Control on size and adsorptive properties of spherical ferric phosphate particles. J. Colloid Interf. Sci. 2006, 300, 225-231.

60

Dean, J. A. Lange's Handbook of Chemistry; McGraw-Hill Inc. : New York, 1992.

61

Koenigsmann, C.; Zhou, W. P.; Adzic, R. R.; Sutter, E.; Wong, S. S. Size-dependent enhancement of electrocatalytic performance in relatively defect-free, processed ultrathin platinum nanowires. Nano Lett. 2010, 10, 2806-2811.

62

Wang, B. F.; Qiu, Y. L.; Ni, S. Y. Ultrafine LiFePO4 cathode materials synthesized by chemical reduction and lithiation method in alcohol solution. Solid State Ionics 2007, 178, 843-847.

63

Islam, M. S.; Driscoll, D. J.; Fisher, C. A. J.; Slater, P. R. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem. Mater. 2005, 17, 5085-5092.

64

Nan, C. Y.; Lu, J.; Li, L. H.; Li, L. L.; Peng, Q.; Li, Y. D. Size and shape control of LiFePO4 nanocrystals for better lithium ion battery cathode materials. Nano Res. 2013, 6, 469-477.

65

Chung, S. Y.; Choi, S. Y.; Yamamoto, T.; Ikuhara, Y. Orientation-dependent arrangement of antisite defects in lithium iron(Ⅱ) phosphate crystals. Angew. Chem. Inter. Ed. 2009, 48, 543-546.

66

Yang, S. F.; Song, Y. N.; Zavalij, P. Y.; Whittingham, M. S. Reactivity, stability and electrochemical behavior of lithium iron phosphates. Electrochem. Commun. 2002, 4, 239-244.

67

Chen, J.; Graetz, J. Study of antisite defects in hydrothermally prepared LiFePO4 by in situ X-ray diffraction. ACS Appl. Mater. Inter. 2011, 3, 1380-1384.

68

Sheng, J. Z.; Li, Q. D.; Wei, Q. L.; Zhang, P.; Wang, Q. Q.; Lv, F.; An, Q. Y.; Chen, W.; Mai, L. Q. Metastable amorphous chromium-vanadium oxide nanoparticles with superior performance as a new lithium battery cathode. Nano Res. 2014, 7, 1604-1612.

69

An, Q. Y.; Zhang, P. F.; Xiong, F. Y.; Wei, Q. L.; Sheng, J. Z.; Wang, Q. Q.; Mai, L. Q. Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries. Nano Res. 2015, 8, 481-490.

70

He, X.; Wang, J.; Kloepsch, R.; Krueger, S.; Jia, H. P.; Liu, H. D.; Vortmann, B.; Li, J. Enhanced electrochemical performance in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method. Nano Res. 2014, 7, 110-118.

71

Yang, J. G.; Han, X. P.; Zhang, X. L.; Cheng, F. Y.; Chen, J. Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithium ion batteries: Nano vs micro, ordered phase (P4332) vs disordered phase (Fd3m). Nano Res. 2013, 6, 679-687.

72

Axmann, P.; Stinner, C.; Wohlfahrt-Mehrens, M.; Mauger, A.; Gendron, F.; Julien, C. M. Nonstoichiometric LiFePO4: Defects and related properties. Chem. Mater. 2009, 21, 1636-1644.

73

Lee, M. H.; Kim, T. H.; Kim, Y. S.; Park, J. S.; Song, H. K. Optimized evolution of a secondary structure of LiFePO4: Balancing between shape and impurities. J. Mater. Chem. 2012, 22, 8228-8234.

74

Gaberscek, M.; Dominko, R.; Jamnik, J. Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochem. Commun. 2007, 9, 2778-2783.

75

Kou, X. J.; Ke, H.; Zhu, C. B.; Rolfe, P. First-principles study of the chemical bonding and conduction behavior of LiFePO4. Chem. Phys. 2015, 446, 1-6.

76

Malik, R.; Zhou, F.; Ceder, G. Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat. Mater. 2011, 10, 587-590.

77

Meethong, N.; Huang, H. Y. S.; Carter, W. C.; Chiang, Y. M. Size-dependent lithium miscibility gap in nanoscale Li1−xFePO4. Electrochem. Solid-State Lett. 2007, 10, A134-A138.

78

Chen, Z. H.; Dahn, J. R. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. J. Electrochem. Soc. 2002, 149, A1184-A1189.

Nano Research
Pages 2573-2594
Cite this article:
Patete JM, Scofield ME, Volkov V, et al. Ambient synthesis, characterization, and electrochemical activity of LiFePO4 nanomaterials derived from iron phosphate intermediates. Nano Research, 2015, 8(8): 2573-2594. https://doi.org/10.1007/s12274-015-0763-5

721

Views

11

Crossref

N/A

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 14 April 2014
Revised: 04 March 2015
Accepted: 05 March 2015
Published: 29 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return