AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Optimal thermoelectric figure of merit of Si/Ge core-shell nanowires

Kaike Yang1Andres Cantarero2Angel Rubio1( )Roberto D'Agosta1,3( )
Nano-Bio Spectroscopy Group and ETSF Scientific Development CenterDepartamento de Fisica de MaterialesUniversidad del Pais Vasco UPV/EHUSan Sebastian20018Spain
Instituto de Ciencia de MaterialesUniversidad de ValenciaValencia46071Spain
IkerbasqueBasque foundation for ScienceBilbao48013Spain
Show Author Information

Graphical Abstract

Abstract

We investigate the thermoelectric energy conversion efficiency of Si and Ge nanowires, and in particular, that of Si/Ge core-shell nanowires. We show how the presence of a thin Ge shell on a Si core nanowire increases the overall figure of merit. We find the optimal thickness of the Ge shell to provide the largest figure of merit for the devices. We also consider Ge core/Si shell nanowires, and show that an optimal thickness of the Si shell does not exist, since the figure of merit is a monotonically decreasing function of the radius of the nanowire. Finally, we verify the empirical law relating the electron energy gap to the optimal working temperature that maximizes the efficiency of the device.

References

1
Nolas, G. S.; Sharp, J.; Goldsmid, H. J. Thermoelectrics: Basic principles and new materials developments; Springer series in material science; Springer Verlag: Berlin, Heidelberg, 2001; Vol. 45.https://doi.org/10.1007/978-3-662-04569-5
2

Goldsmid, H. J. Introduction to Thermoelectricity, 1st ed.; Springer-Verlag: Berlin, 2010; pp 250.

3

Rurali, R. Colloquium: Structural, electronic, and transport properties of silicon nanowires. Rev. Mod. Phys. 2010, 82, 427-449.

4

Dubi, Y.; Di Ventra, M. Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 2011, 83, 131-155.

5

Takabatake, T.; Suekuni, K.; Nakayama, T. Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory. Rev. Mod. Phys. 2014, 86, 669-716.

6

Tritt, T. M. Thermoelectrics run hot and cold. Science 1996, 272, 1276-1277.

7

DiSalvo, F. J. Thermoelectric cooling and power generation. Science 1999, 285, 703-706.

8

Zhao, L. D.; Lo, S. H.; Zhang, Y. S.; Sun, H.; Tan, G. J.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373-377.

9

Hicks, L. D.; Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993, 47, 12727-12731.

10

Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163-167.

11

Boukai, A. I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J. K.; Goddard, W. A.; Heath, J. R. Silicon nanowires as efficient thermoelectric materials. Nature 2008, 451, 168-171.

12

Lee, J. H.; Galli, G. A.; Grossman, J. C. Nanoporous Si as an efficient thermoelectric material. Nano Lett. 2008, 8, 3750-3754.

13

Vo, T. T. M.; Williamson, A. J.; Lordi, V.; Galli, G. Atomistic design of thermoelectric properties of silicon nanowires. Nano Lett. 2008, 8, 1111-1114.

14

Tang, J. Y.; Wang, H. -T.; Lee, D. H.; Fardy, M.; Huo, Z. Y.; Russell, T. P.; Yang, P. D. Holey silicon as an efficient thermoelectric material. Nano Lett. 2010, 10, 4279-4283.

15

Chen, Y.; Jayasekera, T.; Calzolari, A.; Kim, K. W.; Buongiorno Nardelli, M. Thermoelectric properties of graphene nanoribbons, junctions and superlattices. J. Phys. Condens. Matter 2010, 22, 372202.

16

Amato, M.; Ossicini, S.; Rurali, R. Band-offset driven efficiency of the doping of SiGe core-shell nanowires. Nano Lett. 2011, 11, 594-598.

17

Lee, E. K.; Yin, L.; Lee, Y.; Lee, J. W.; Lee, S. J.; Lee, J.; Cha, S. N.; Whang, D.; Hwang, G. S.; Hippalgaonkar, K. et al. Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties. Nano Lett. 2012, 12, 2918-2923.

18

Markussen, T. Surface disordered Ge-Si core-shell nanowires as efficient thermoelectric materials. Nano Lett. 2012, 12, 4698-4704.

19

Curtin, B. M.; Codecido, E. A.; Kramer, S.; Bowers, J. E. Field-effect modulation of thermoelectric properties in multigated silicon nanowires. Nano Lett. 2013, 13, 5503-5508.

20

Jiang, X. C.; Xiong, Q. H.; Nam, S.; Qian, F.; Li, Y.; Lieber, C. M. InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 2007, 7, 3214-3218.

21

Tian, Y.; Sakr, M. R.; Kinder, J. M.; Liang, D.; MacDonald, M. J.; Qiu, R. L. J.; Gao, H. J.; Gao, X. P. A. One dimensional quantum confinement effect modulated thermoelectric properties in InAs nanowires. Nano Lett. 2012, 12, 6492-6497.

22

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

23

Ceperley, D. M.; Alder, B. J. The ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566-569.

24

Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048-5079.

25

Yang, K. K.; Chen, Y. P.; D'Agosta, R.; Xie, Y. E.; Zhong, J. X.; Rubio, A. Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons. Phys. Rev. B 2012, 86, 045425.

26

D'Agosta, R. Towards a dynamical approach to the calculation of the figure of merit of thermoelectric nanoscale devices. Phys. Chem. Chem. Phys. 2013, 15, 1758-1765.

27

Yang, K.; Cahangirov, S.; Cantarero, A.; Rubio, A.; D'Agosta, R. Thermoelectric properties of atomically thin silicene and germanene nanostructures. Phys. Rev. B 2014, 89, 125403.

28

Keating, P. Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev. 1966, 145, 637.

29

Mingo, N. Anharmonic phonon flow through molecular-sized junctions. Phys. Rev. B 2006, 74, 125402.

30

Wang, J. S.; Wang, J.; Zeng, N. Nonequilibrium Green's function approach to mesoscopic thermal transport. Phys. Rev. B 2006, 74, 033408.

31

Yamamoto, T.; Watanabe, K. Nonequilibrium Green's function approach to phonon transport in defective carbon nanotubes. Phys. Rev. Lett. 2006, 96, 255503.

32

Wang, J. S. Quantum thermal transport from classical molecular dynamics. Phys. Rev. Lett. 2007, 99, 160601.

33

Wang, J. S.; Wang, J.; Lüe, J. T. Quantum thermal transport in nanostructures. Eur. Phys. J. B 2008, 62, 381-404.

34

Chen, J.; Zhang, G.; Li, B. Tunable thermal conductivity of Si1-xGex nanowires. Appl. Phys. Lett. 2009, 95, 073117.

35

Wan, W. H.; Xiong, B. G.; Zhang, W. X.; Feng, J.; Wang, E. G. The effect of electron-phonon coupling on the thermal conductivities of silicon nanowires. J. Phys. Condens. Matter 2012, 24, 295402.

36

Shanks, H. R.; Sidles, P. H.; Maycock, P. D.; Danielson, G. C. Thermal conductivity of silicon from 300 to 1400 K. Phys. Rev. 1963, 130, 1743.

37

Rücker, H.; Methfessel, M. Anharmonic Keating model for group-Ⅳ semiconductors with application to the lattice dynamics in alloys of Si, Ge, and C. Phys. Rev. B 1995, 52, 11059-11072.

38

Thonhauser, T.; Mahan, G. D. Phonon modes in Si [111] nanowires. Phys. Rev. B 2004, 69, 075213.

39

Shelley, M.; Mostofi, A. A. Prediction of high ZT in thermoelectric silicon nanowires with axial germanium heterostructures. Europhys. Lett. 2011, 94, 67001.

40

Moon, J.; Kim, J. H.; Chen, Z. C. Y.; Xiang, J.; Chen, R. K. Gate-modulated thermoelectric power factor of hole gas in Ge-Si core-shell nanowires. Nano Lett. 2013, 13, 1196-1202.

41

Wingert, M. C.; Chen, Z. C. Y.; Dechaumphai, E.; Moon, J.; Kim, J. H.; Xiang, J.; Chen, R. K. Thermal conductivity of Ge and Ge-Si core-shell nanowires in the phonon confinement regime. Nano Lett. 2011, 11, 5507-5513.

42

Yu, B.; Zebarjadi, M.; Wang, H. H.; Lukas, K.; Wang, H. Z.; Wang, D. Z.; Opeil, C.; Dresselhaus, M.; Chen, G.; Ren, Z. F. Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Lett. 2012, 12, 2077-2082.

43

Goldmid, H. J.; Sharp, J. W. Estimates of the thermal band gap of a semiconductor from Seebeck measurements. J. Electron. Mater. 1999, 28, 869.

44

Goldsmid, H. J. The thermal conductivity of bismuth telluride. Proc. Phys. Soc. B 1956, 69, 203-209.

Nano Research
Pages 2611-2619
Cite this article:
Yang K, Cantarero A, Rubio A, et al. Optimal thermoelectric figure of merit of Si/Ge core-shell nanowires. Nano Research, 2015, 8(8): 2611-2619. https://doi.org/10.1007/s12274-015-0766-2

602

Views

19

Crossref

N/A

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 05 January 2015
Revised: 11 February 2015
Accepted: 05 March 2015
Published: 29 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return