AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Novel hydrogen storage properties of palladium nanocrystals activated by a pentagonal cyclic twinned structure

Huang Huang§Shixiong Bao§Qiaoli ChenYanan YangZhiyuan JiangQin Kuang( )Xiaoyin WuZhaoxiong Xie( )Lansun Zheng
State Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materialsand Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Researchers appear to have neglected a special form of crystallites, pentagonal cyclic twinning, in which an obvious two-dimensional lattice expansion exists leading to novel physical–chemical properties associated with the changes in geometric and electronic structures. Using the storage and release of hydrogen in Pd nanocrystals as a probe, we have found that icosahedral pentagonal cyclic twinned Pd nanocrystals had distinct hydrogen storage properties, due to the two-dimensional lattice expansions, quite different from those of the octahedral single crystalline counterpart. In addition, the two-dimensional lattice expansion in pentagonal cyclic twinned Pd nanocrystals causes a change in electronic structure, which results in novel catalytic properties involving in situ formation of PdHx pentagonal cyclic twinned nanocrystals.

Electronic Supplementary Material

Download File(s)
12274_2015_776_MOESM1_ESM.pdf (2 MB)

References

1

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.

2

Jia, Y. Y.; Jiang, Y. Q.; Zhang, J. W.; Zhang, L.; Chen, Q. L.; Xie, Z. X.; Zheng, L. S. Unique excavated rhombic dodecahedral PtCu3 alloy nanocrystals constructed with ultrathin nanosheets of high-energy {110} facets. J. Am. Chem. Soc. 2014, 136, 3748-3751.

3

Zhu, Z.; Guan, Z. C.; Jia, S. S.; Lei, Z. C.; Lin, S. C.; Zhang, H. M.; Ma, Y. L.; Tian, Z. Q.; Yang, C. Y. J. Au@Pt nanoparticle encapsulated target-responsive hydrogel with volumetric bar-chart chip readout for quantitative point-of-care testing. Angew. Chem. Int. Ed. 2014, 53, 12503-12507.

4

Deogratias, N.; Ji, M. W.; Zhang, Y.; Liu, J. J.; Zhang, J. T.; Zhu, H. S. Core@shell sub-ten-nanometer noble metal nanoparticles with a controllable thin Pt shell and their catalytic activity towards oxygen reduction. Nano Res. 2015, 8, 271-280.

5

Li, Y.; Fan, X. B.; Qi, J. J.; Ji, J. Y.; Wang, S. L.; Zhang, G. L.; Zhang, F. B. Palladium nanoparticle-graphene hybrids as active catalysts for the suzuki reaction. Nano Res. 2010, 3, 429-437.

6

Zhang, J. W.; Hou, C. P.; Huang, H.; Zhang, L.; Jiang, Z. Y.; Chen, G. X.; Jia, Y. Y.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. Surfactant-concentration-dependent shape evolution of Au-Pd alloy nanocrystals from rhombic dodecahedron to trisoctahedron and hexoctahedron. Small 2013, 9, 538-544.

7

Gu, J.; Zhang, Y. W.; Tao, F. Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chem. Soc. Rev. 2012, 41, 8050-8065.

8

Zhang, J. W.; Zhang, L.; Jia, Y. Y.; Chen, G. X.; Wang, X.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. Synthesis of spatially uniform metal alloys nanocrystals via a diffusion controlled growth strategy: The case of Au-Pd alloy trisoctahedral nanocrystals with tunable composition. Nano Res. 2012, 5, 618-629.

9

Marks, L. D. Experimental studies of small-particle structures. Rep. Prog. Phys. 1994, 57, 603-649.

10

Mackay, A. L. A dense non-crystallographic packing of equal spheres. Acta Cryst. 1962, 15, 916-918.

11

Calvo, F.; Carré, A. Structural transitions and stabilization of palladium nanoparticles upon hydrogenation. Nanotechnology 2006, 17, 1292-1299.

12

Lim, B.; Wang, J. G.; Camargo, P. H. C.; Cobley, C. M.; Kim, M. J.; Xia, Y. N. Twin-induced growth of palladium-platinum alloy nanocrystals. Angew. Chem. Int. Ed. 2009, 48, 6304-6308.

13

Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P. D. Platonic gold nanocrystals. Angew. Chem. Int. Ed. 2004, 43, 3673-3677.

14

Zhang, S. H.; Jiang, Z. Y.; Xie, Z. X.; Xu, X.; Huang, R. B.; Zheng, L. S. Growth of silver nanowires from solutions: A cyclic penta-twinned-crystal growth mechanism. J. Phys. Chem. B 2005, 109, 9416-9421.

15

Zhou, W.; Wu, J. B.; Yang, H. Highly uniform platinum icosahedra made by hot injection-assisted GRAILS method. Nano Lett. 2013, 13, 2870-284.

16

Pietrobon, B.; McEachran, M.; Kitaev, V. Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods. ACS Nano 2009, 3, 21-26.

17

Li, C. C.; Sato, R.; Kanehara, M.; Zeng, H. B.; Bando, Y.; Teranishi, T. Controllable polyol synthesis of uniform palladium icosahedra: Effect of twinned structure on deformation of crystalline lattices. Angew. Chem. Int. Ed. 2009, 48, 6883-6887.

18

Yin, A. X.; Min, X. Q.; Zhu, W.; Wu, H. S.; Zhang, Y. W.; Yan, C. H. Multiply twinned Pt-Pd nanoicosahedrons as highly active electrocatalysts for methanol oxidation. Chem. Commun. 2012, 48, 543-545.

19

Wu, J. B.; Qi, L.; You, H. J.; Gross, A.; Li, J.; Yang, H. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J. Am. Chem. Soc. 2012, 134, 11880-11883.

20

Zhang, Q. B.; Xie, J. P.; Yu, Y.; Yang, J. H.; Lee J. Y. Tuning the crystallinity of Au nanoparticles. Small 2010, 6, 523-527.

21

Huang, H. W.; Wang, Y.; Ruditskiy, A.; Peng, H. C.; Zhao, X.; Zhang, L.; Liu, J. Y.; Ye, Z. Z.; Xia, Y. N. Polyol syntheses of palladium decahedra and icosahedra as pure samples by maneuvering the reaction kinetics with additives. ACS Nano 2014, 8, 7041-7050.

22

Xiong, Y. J.; McLellan, J. M.; Yin, Y. D.; Xia, Y. N. Synthesis of palladium icosahedra with twinned structure by blocking oxidative etching with citric acid or citrate ions. Angew. Chem. Int. Ed. 2007, 46, 790-794.

23

Bao, S. X.; Zhang, J. W.; Jiang, Z. Y.; Zhou, X.; Xie, Z. X. Understanding the formation of pentagonal cyclic twinned crystal from the solvent dependent assembly of Au nanocrystals into their colloidal crystals. J. Phys. Chem. Lett. 2013, 4, 3440-3444.

24

Niu, Z. Q.; Peng, Q.; Gong, M.; Rong, H. P.; Li, Y. D. Oleylamine-mediated shape evolution of palladium nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 6315-6319.

25

Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2009, 48, 60-103.

26

Tang, Y.; Ouyang, M. Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering. Nat. Mater. 2007, 6, 754-759.

27

Adams, B. D.; Chen, A. C. The role of palladium in a hydrogen economy. Mater. Today 2011, 14, 282-289.

28

Jiang, K.; Xu, K.; Zou, S. Z.; Cai, W. B. B-Doped Pd catalyst: Boosting room-temperature hydrogen production from formic acid-formate solutions. J. Am. Chem. Soc. 2014, 136, 4861-4864.

29

Jiang, K.; Zhang, H. X.; K.; Zou, S. Z.; Cai, W. B. Electrocatalysis of formic acid on palladium and platinum surfaces: From fundamental mechanisms to fuel cell applications. Phys. Chem. Chem. Phys. 2014, 16, 20360-20376.

30

Kobayashi, H.; Yamauchi, M.; Kitagawa, H.; Kubota, Y.; Kato, K.; Takata, M. On the nature of strong hydrogen atom trapping inside Pd nanoparticles. J. Am. Chem. Soc. 2008, 130, 1828-1829.

31

Senftle, T. P.; Janik, M. J.; van Duin, A. C. T. A ReaxFF investigation of hydride formation in palladium nanoclusters via Monte Carlo and molecular dynamics simulations. J. Phys. Chem. C 2014, 118, 4967-4981.

32

Sachs, C.; Pundt, A.; Kirchheim, R.; Winter, M.; Reetz, M. T.; Fritsh, D. Solubility of hydrogen in single-sized palladium clusters. Phys. Rev. B 2001, 64, 075108.

33

Li, G. Q.; Kobayashi, H.; Dekura, S.; Ikeda, R.; Kubota, Y.; Kato, K.; Takata, M.; Yamamoto, T.; Matsumura, S.; Kitagawa, H. Shape-dependent hydrogen-storage properties in Pd nanocrystals: Which does hydrogen prefer, octahedron (111) or cube (100)? J. Am. Chem. Soc. 2014, 136, 10222-10225.

34

Chen, Y. X.; He, B. L.; Huang, T.; Liu, H. F. Controlled synthesis of palladium icosahedra nanocrystals by reducing H2PdCl4 with tetraethylene glycol. Colloids Surf. A 2009, 348, 145-150.

35

Hong, J. W.; Kim, D.; Lee, Y. W.; Kim, M.; Kang, S. W.; Han, S. W. Atomic-distribution-dependent electrocatalytic activity of Au-Pd bimetallic nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 8876-8880.

36

Dai, Y.; Mu, X. L.; Tan, Y. M.; Lin, K. Q.; Yang, Z. L.; Zheng, N. F.; Fu, G. Carbon monoxide-assisted synthesis of single-crystalline Pd tetrapod nanocrystals through hydride formation. J. Am. Chem. Soc. 2012, 134, 7073-7080.

37

Srivastava, S. C.; Newman, L. Mixed-ligand complexes of palladium (Ⅱ) with bromide and iodide. Inorg. Chem. 1967, 6, 762-765.

38

Carrasquillo, A.; Jeng, J. J.; Barriga, R. J.; Temesghen, W. F.; Soriaga, M. P. Electrode-surface coordination chemistry: Ligand substitution and competitive coordination of halides at well-defined Pd(100) and Pd(111) single crystals. Inorg. Chim. Acta 1997, 255, 249-254.

39

Völkl, J.; Alefeld, G. Diffusion of hydrogen in metals. In Hydrogen in Metals I; Alefeld, G.; Völkl, J., Eds.; Springer-Verlag: Berlin Heidelberg, 1978; pp 321-348.

40

Grönbeck, H.; Zhdanov, V. P. Effect of lattice strain on hydrogen diffusion in Pd: A density functional theory study. Phys. Rev. B 2011, 84, 052301.

41

Jose, D.; Jagirdar, B. R. Nature of hydrogen atom trapped inside palladium lattice. Int. J. Hydrogen Energy 2010, 35, 6804-6811.

42

Phan, T. H.; Schaak, R. E. Polyol synthesis of palladium hydride: Bulk powders vs. nanocrystals. Chem. Commun. 2009, 3026-3028.

43

Hu, C. Y.; Lin, K. Q.; Wang, X. L.; Liu, S. J.; Yi, J.; Tian, Y.; Wu, B. H.; Chen, G. X.; Yang, H. Y.; Dai, Y. et al. Electrostatic self-assembling formation of Pd superlattice nanowires from surfactant-free ultrathin Pd nanosheets. J. Am. Chem. Soc. 2014, 136, 12856-12859.

44

Hyotanishi, M.; Isomura, Y.; Yamamoto, H.; Kawasaki, H.; Obora, Y. Surfactant-free synthesis of palladium nanoclusters for their use in catalytic cross-coupling reactions. Chem. Commun. 2011, 47, 5750-5752.

Nano Research
Pages 2698-2705
Cite this article:
Huang H, Bao S, Chen Q, et al. Novel hydrogen storage properties of palladium nanocrystals activated by a pentagonal cyclic twinned structure. Nano Research, 2015, 8(8): 2698-2705. https://doi.org/10.1007/s12274-015-0776-0

705

Views

32

Crossref

N/A

Web of Science

29

Scopus

7

CSCD

Altmetrics

Received: 11 February 2015
Revised: 26 March 2015
Accepted: 31 March 2015
Published: 29 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return