Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Researchers appear to have neglected a special form of crystallites, pentagonal cyclic twinning, in which an obvious two-dimensional lattice expansion exists leading to novel physical–chemical properties associated with the changes in geometric and electronic structures. Using the storage and release of hydrogen in Pd nanocrystals as a probe, we have found that icosahedral pentagonal cyclic twinned Pd nanocrystals had distinct hydrogen storage properties, due to the two-dimensional lattice expansions, quite different from those of the octahedral single crystalline counterpart. In addition, the two-dimensional lattice expansion in pentagonal cyclic twinned Pd nanocrystals causes a change in electronic structure, which results in novel catalytic properties involving in situ formation of PdHx pentagonal cyclic twinned nanocrystals.
Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.
Jia, Y. Y.; Jiang, Y. Q.; Zhang, J. W.; Zhang, L.; Chen, Q. L.; Xie, Z. X.; Zheng, L. S. Unique excavated rhombic dodecahedral PtCu3 alloy nanocrystals constructed with ultrathin nanosheets of high-energy {110} facets. J. Am. Chem. Soc. 2014, 136, 3748-3751.
Zhu, Z.; Guan, Z. C.; Jia, S. S.; Lei, Z. C.; Lin, S. C.; Zhang, H. M.; Ma, Y. L.; Tian, Z. Q.; Yang, C. Y. J. Au@Pt nanoparticle encapsulated target-responsive hydrogel with volumetric bar-chart chip readout for quantitative point-of-care testing. Angew. Chem. Int. Ed. 2014, 53, 12503-12507.
Deogratias, N.; Ji, M. W.; Zhang, Y.; Liu, J. J.; Zhang, J. T.; Zhu, H. S. Core@shell sub-ten-nanometer noble metal nanoparticles with a controllable thin Pt shell and their catalytic activity towards oxygen reduction. Nano Res. 2015, 8, 271-280.
Li, Y.; Fan, X. B.; Qi, J. J.; Ji, J. Y.; Wang, S. L.; Zhang, G. L.; Zhang, F. B. Palladium nanoparticle-graphene hybrids as active catalysts for the suzuki reaction. Nano Res. 2010, 3, 429-437.
Zhang, J. W.; Hou, C. P.; Huang, H.; Zhang, L.; Jiang, Z. Y.; Chen, G. X.; Jia, Y. Y.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. Surfactant-concentration-dependent shape evolution of Au-Pd alloy nanocrystals from rhombic dodecahedron to trisoctahedron and hexoctahedron. Small 2013, 9, 538-544.
Gu, J.; Zhang, Y. W.; Tao, F. Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chem. Soc. Rev. 2012, 41, 8050-8065.
Zhang, J. W.; Zhang, L.; Jia, Y. Y.; Chen, G. X.; Wang, X.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. Synthesis of spatially uniform metal alloys nanocrystals via a diffusion controlled growth strategy: The case of Au-Pd alloy trisoctahedral nanocrystals with tunable composition. Nano Res. 2012, 5, 618-629.
Marks, L. D. Experimental studies of small-particle structures. Rep. Prog. Phys. 1994, 57, 603-649.
Mackay, A. L. A dense non-crystallographic packing of equal spheres. Acta Cryst. 1962, 15, 916-918.
Calvo, F.; Carré, A. Structural transitions and stabilization of palladium nanoparticles upon hydrogenation. Nanotechnology 2006, 17, 1292-1299.
Lim, B.; Wang, J. G.; Camargo, P. H. C.; Cobley, C. M.; Kim, M. J.; Xia, Y. N. Twin-induced growth of palladium-platinum alloy nanocrystals. Angew. Chem. Int. Ed. 2009, 48, 6304-6308.
Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P. D. Platonic gold nanocrystals. Angew. Chem. Int. Ed. 2004, 43, 3673-3677.
Zhang, S. H.; Jiang, Z. Y.; Xie, Z. X.; Xu, X.; Huang, R. B.; Zheng, L. S. Growth of silver nanowires from solutions: A cyclic penta-twinned-crystal growth mechanism. J. Phys. Chem. B 2005, 109, 9416-9421.
Zhou, W.; Wu, J. B.; Yang, H. Highly uniform platinum icosahedra made by hot injection-assisted GRAILS method. Nano Lett. 2013, 13, 2870-284.
Pietrobon, B.; McEachran, M.; Kitaev, V. Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods. ACS Nano 2009, 3, 21-26.
Li, C. C.; Sato, R.; Kanehara, M.; Zeng, H. B.; Bando, Y.; Teranishi, T. Controllable polyol synthesis of uniform palladium icosahedra: Effect of twinned structure on deformation of crystalline lattices. Angew. Chem. Int. Ed. 2009, 48, 6883-6887.
Yin, A. X.; Min, X. Q.; Zhu, W.; Wu, H. S.; Zhang, Y. W.; Yan, C. H. Multiply twinned Pt-Pd nanoicosahedrons as highly active electrocatalysts for methanol oxidation. Chem. Commun. 2012, 48, 543-545.
Wu, J. B.; Qi, L.; You, H. J.; Gross, A.; Li, J.; Yang, H. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J. Am. Chem. Soc. 2012, 134, 11880-11883.
Zhang, Q. B.; Xie, J. P.; Yu, Y.; Yang, J. H.; Lee J. Y. Tuning the crystallinity of Au nanoparticles. Small 2010, 6, 523-527.
Huang, H. W.; Wang, Y.; Ruditskiy, A.; Peng, H. C.; Zhao, X.; Zhang, L.; Liu, J. Y.; Ye, Z. Z.; Xia, Y. N. Polyol syntheses of palladium decahedra and icosahedra as pure samples by maneuvering the reaction kinetics with additives. ACS Nano 2014, 8, 7041-7050.
Xiong, Y. J.; McLellan, J. M.; Yin, Y. D.; Xia, Y. N. Synthesis of palladium icosahedra with twinned structure by blocking oxidative etching with citric acid or citrate ions. Angew. Chem. Int. Ed. 2007, 46, 790-794.
Bao, S. X.; Zhang, J. W.; Jiang, Z. Y.; Zhou, X.; Xie, Z. X. Understanding the formation of pentagonal cyclic twinned crystal from the solvent dependent assembly of Au nanocrystals into their colloidal crystals. J. Phys. Chem. Lett. 2013, 4, 3440-3444.
Niu, Z. Q.; Peng, Q.; Gong, M.; Rong, H. P.; Li, Y. D. Oleylamine-mediated shape evolution of palladium nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 6315-6319.
Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2009, 48, 60-103.
Tang, Y.; Ouyang, M. Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering. Nat. Mater. 2007, 6, 754-759.
Adams, B. D.; Chen, A. C. The role of palladium in a hydrogen economy. Mater. Today 2011, 14, 282-289.
Jiang, K.; Xu, K.; Zou, S. Z.; Cai, W. B. B-Doped Pd catalyst: Boosting room-temperature hydrogen production from formic acid-formate solutions. J. Am. Chem. Soc. 2014, 136, 4861-4864.
Jiang, K.; Zhang, H. X.; K.; Zou, S. Z.; Cai, W. B. Electrocatalysis of formic acid on palladium and platinum surfaces: From fundamental mechanisms to fuel cell applications. Phys. Chem. Chem. Phys. 2014, 16, 20360-20376.
Kobayashi, H.; Yamauchi, M.; Kitagawa, H.; Kubota, Y.; Kato, K.; Takata, M. On the nature of strong hydrogen atom trapping inside Pd nanoparticles. J. Am. Chem. Soc. 2008, 130, 1828-1829.
Senftle, T. P.; Janik, M. J.; van Duin, A. C. T. A ReaxFF investigation of hydride formation in palladium nanoclusters via Monte Carlo and molecular dynamics simulations. J. Phys. Chem. C 2014, 118, 4967-4981.
Sachs, C.; Pundt, A.; Kirchheim, R.; Winter, M.; Reetz, M. T.; Fritsh, D. Solubility of hydrogen in single-sized palladium clusters. Phys. Rev. B 2001, 64, 075108.
Li, G. Q.; Kobayashi, H.; Dekura, S.; Ikeda, R.; Kubota, Y.; Kato, K.; Takata, M.; Yamamoto, T.; Matsumura, S.; Kitagawa, H. Shape-dependent hydrogen-storage properties in Pd nanocrystals: Which does hydrogen prefer, octahedron (111) or cube (100)? J. Am. Chem. Soc. 2014, 136, 10222-10225.
Chen, Y. X.; He, B. L.; Huang, T.; Liu, H. F. Controlled synthesis of palladium icosahedra nanocrystals by reducing H2PdCl4 with tetraethylene glycol. Colloids Surf. A 2009, 348, 145-150.
Hong, J. W.; Kim, D.; Lee, Y. W.; Kim, M.; Kang, S. W.; Han, S. W. Atomic-distribution-dependent electrocatalytic activity of Au-Pd bimetallic nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 8876-8880.
Dai, Y.; Mu, X. L.; Tan, Y. M.; Lin, K. Q.; Yang, Z. L.; Zheng, N. F.; Fu, G. Carbon monoxide-assisted synthesis of single-crystalline Pd tetrapod nanocrystals through hydride formation. J. Am. Chem. Soc. 2012, 134, 7073-7080.
Srivastava, S. C.; Newman, L. Mixed-ligand complexes of palladium (Ⅱ) with bromide and iodide. Inorg. Chem. 1967, 6, 762-765.
Carrasquillo, A.; Jeng, J. J.; Barriga, R. J.; Temesghen, W. F.; Soriaga, M. P. Electrode-surface coordination chemistry: Ligand substitution and competitive coordination of halides at well-defined Pd(100) and Pd(111) single crystals. Inorg. Chim. Acta 1997, 255, 249-254.
Völkl, J.; Alefeld, G. Diffusion of hydrogen in metals. In Hydrogen in Metals I; Alefeld, G.; Völkl, J., Eds.; Springer-Verlag: Berlin Heidelberg, 1978; pp 321-348.
Grönbeck, H.; Zhdanov, V. P. Effect of lattice strain on hydrogen diffusion in Pd: A density functional theory study. Phys. Rev. B 2011, 84, 052301.
Jose, D.; Jagirdar, B. R. Nature of hydrogen atom trapped inside palladium lattice. Int. J. Hydrogen Energy 2010, 35, 6804-6811.
Phan, T. H.; Schaak, R. E. Polyol synthesis of palladium hydride: Bulk powders vs. nanocrystals. Chem. Commun. 2009, 3026-3028.
Hu, C. Y.; Lin, K. Q.; Wang, X. L.; Liu, S. J.; Yi, J.; Tian, Y.; Wu, B. H.; Chen, G. X.; Yang, H. Y.; Dai, Y. et al. Electrostatic self-assembling formation of Pd superlattice nanowires from surfactant-free ultrathin Pd nanosheets. J. Am. Chem. Soc. 2014, 136, 12856-12859.
Hyotanishi, M.; Isomura, Y.; Yamamoto, H.; Kawasaki, H.; Obora, Y. Surfactant-free synthesis of palladium nanoclusters for their use in catalytic cross-coupling reactions. Chem. Commun. 2011, 47, 5750-5752.