Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Porous Pt-Fe bimetallic nanocrystals have been synthesized via self-assembly and can effectively facilitate the synthesis of 2-propanol from acetone. The bimetallic catalyst has three-dimensional channels and shows turnover frequencies (TOFs) of up to 972 h-1 for a continuous process more than 50 h. Preliminary mechanistic studies suggest that the high reactivity is related to the interface consisting of a bimetallic Pt-Fe alloy and Fe2O3-x. An understanding of real catalytic behavior and the catalytic mechanism based on model systems has been shown to help fabricate an improved Pt/Fe3O4 catalyst with increased activity and lifetime which has great potential for large-scale industrial applications.
MacNaughton, N. W.; Anderson, L. C. The mechanism of the catalytic reduction of some carbonyl compounds. J. Am. Chem. Soc. 1942, 64, 1456-1459.
Niwa, S. I.; Eswaramoorthy, M.; Nair, J.; Raj, A.; Itoh, N.; Shoji, H.; Namba, T.; Mizukami, F. A one-step conversion of benzene to phenol with a palladium membrane. Science 2002, 295, 105-107.
van Santen, R. A.; Sheldon, R. A. Catalytic Oxidation: Principles and Applications. ; World Scientific: Singapore, 1995.
Gandia, L. M.; Montes, M. Effect of the design variables on the energy performance and size parameters of a heat transformer based on the system acetone/H2/2-propanol. Int. J. Energy Res. 1992, 16, 851-864.
Meng, N.; Shinoda, S.; Saito, Y. Improvements on thermal efficiency of chemical heat pump involving the reaction couple of 2-propanol dehydrogenation and acetone hydrogenation. Int. J. Hydrogen Energy 1997, 22, 361-367.
Pardillos-Guindet, J.; Vidal, S.; Court, J.; Fouilloux, P. Electrode potential of a dispersed Raney nickel electrode during acetone hydrogenation: Influence of the solution and reaction kinetics. J. Catal. 1995, 155, 12-20.
Dresselhaus, M.; Crabtree, G.; Buchanan, M. Basic Research Needs for the Hydrogen Economy: Report of the Basic Energy Sciences Workshop on Hydrogen Production, Storage and Use; Office of science, U.S. department of energy: Washington, 2004.
Lemcoff, N. O. Liquid phase catalytic hydrogenation of acetone. J. Catal. 1977, 46, 356-364.
Gandia, L. M.; Diaz, A.; Montes, M. Selectivity in the high-temperature hydrogenation of acetone with silica-supported nickel and cobalt catalysts. J. Catal. 1995, 157, 461-471.
Sen, B.; Vannice, M. A. Metal-support effects on acetone hydrogenation over platinum catalysts. J. Catal. 1988, 113, 52-71.
Fuente, A. M.; Pulgar, G.; González, F.; Pesquera, C.; Blanco, C. Activated carbon supported Pt catalysts: Effect of support texture and metal precursor on activity of acetone hydrogenation. Appl. Catal. A 2001, 208, 35-46.
Noyori, R.; Hashiguchi, S. Asymmetric transfer hydrogenation catalyzed by chiral ruthenium complexes. Acc. Chem. Res. 1997, 30, 97-102.
Rao, R. S.; Walters, A. B.; Vannice, M. A. Influence of crystallite size on acetone hydrogenation over copper catalysts. J. Phys. Chem. B 2005, 109, 2086-2092.
Özkar, S.; Finke, R. G. Iridium(0) nanocluster, acid-assisted catalysis of neat acetone hydrogenation at room temperature: Exceptional activity, catalyst lifetime, and selectivity at complete conversion. J. Am. Chem. Soc. 2005, 127, 4800-4808.
Niu, Z. Q.; Wang, D. S.; Yu, R.; Peng, Q.; Li, Y. D. Highly branched Pt-Ni nanocrystals enclosed by stepped surface for methanol oxidation. Chem. Sci. 2012, 3, 1925-1929.
Huang, X. Q.; Li, Y. J.; Chen, Y.; Zhou, E. B.; Xu, Y. X.; Zhou, H. L.; Duan, X. F.; Huang, Y. Palladium-based nanostructures with highly porous features and perpendicular pore channels as enhanced organic catalysts. Angew. Chem. Int. Ed. 2013, 52, 2520-2524.
Wu, H. X.; Wang, P.; He, H. L.; Jin, Y. D. Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties. Nano Res. 2012, 5, 135-144.
Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W. C.; Cheng, F. Y.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014, 7, 199-208.
Banfield, J. F.; Welch, S. A.; Zhang, H.; Ebert, T. T.; Penn, R. L. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 2000, 289, 751-754.
Wang, D. S.; Peng, Q.; Li, Y. D. Nanocrystalline intermetallics and alloys. Nano Res. 2010, 3, 574-580.
Wang, H. L.; Krier, J. M.; Zhu, Z. W.; Melaet, G.; Wang, Y. H.; Kennedy, G.; Alayoglu, S.; An, K.; Somorjai, G. A. Promotion of hydrogenation of organic molecules by incorporating iron into platinum nanoparticle catalysts: Displacement of inactive reaction intermediates. ACS Catal. 2013, 3, 2371-2375.
Schmitz, E.; Eichhorn, I.; Patai, S. The Chemistry of the Ether Linkage; Interscience: New York, 1967; pp 341-345.
Narayanan, S.; Unnikrishnan, R. Selective hydrogenation of acetone to methyl isobutyl ketone (MIBK) over co-precipitated Ni/Al2O3 catalysts. Appl. Catal. A 1996, 145, 231-236.
Cunningham, J.; Al-Sayyed, G. H.; Cronin, J. A.; Healy, C.; Hirschwald, W. Surface synergisms between copper and its oxides in catalytic isopropanol/acetone interconversions at 430-523 K. Appl. Catal. 1986, 25, 129-138.
Boffa, A.; Lin, C.; Bell, A. T.; Somorjai, G. A. Promotion of CO and CO2 hydrogenation over Rh by metal oxides: The influence of oxide lewis acidity and reducibility. J. Catal. 1994, 149, 149-158.
Zhou, H. P.; Wu, H. S.; Shen, J.; Yin, A. X.; Sun, L. D.; Yan, C. H. Thermally stable Pt/CeO2 hetero-nanocomposites with high catalytic activity. J. Am. Chem. Soc. 2010, 132, 4998-4999.
Bowker, M.; James, D.; Stone, P.; Bennett, R.; Perkins, N.; Millard, L.; Greaves, J.; Dickinson, A. Catalysis at the metal-support interface: Exemplified by the photocatalytic reforming of methanol on Pd/TiO2. J. Catal. 2003, 217, 427-433.
Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987; pp 619-665.