AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

True-color real-time imaging and spectroscopy of carbon nanotubes on substrates using enhanced Rayleigh scattering

Wenyun Wu1,§Jingying Yue1,§Xiaoyang Lin1,§Dongqi Li1,§Fangqiang Zhu2Xue Yin3Jun Zhu3Jiangtao Wang1Jin Zhang1Yuan Chen1Xinhe Wang1Tianyi Li1Yujun He1Xingcan Dai1( )Peng Liu1Yang Wei1Jiaping Wang1,4Wei Zhang5Yidong Huang5Li Fan1Lina Zhang1Qunqing Li1,4Shoushan Fan1Kaili Jiang1,4( )
State Key Laboratory of Low-Dimensional Quantum PhysicsDepartment of Physics & Tsinghua-Foxconn Nanotechnology Research CenterTsinghua UniversityBeijing100084China
Department of PhysicsIndiana University-Purdue University IndianapolisIndianapolis, IndianaUSA
State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentsTsinghua UniversityBeijing100084China
Collaborative Innovation Center of Quantum MatterBeijing100084China
Tsinghua National Laboratory for Information Science and TechnologyDepartment of Electronic EngineeringTsinghua UniversityBeijing100084China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Single-walled carbon nanotubes (SWCNTs) illuminated by white light should appear colored due to resonance Rayleigh scattering. However, true-color imaging of SWCNTs on substrates has not been reported, because of the extremely low scattering intensity of SWCNTs and the strong substrate scattering. Here we show that Rayleigh scattering can be greatly enhanced by the interface dipole enhancement effect. Consequently colorful SWCNTs on substrates can be directly imaged under an optical microscope by wide field supercontinuum laser illumination, which facilitates high throughput chirality assignment of individual SWCNTs. This approach, termed "Rayleigh imaging microscopy", is not restricted to SWCNTs, but widely applicable to a variety of nanomaterials, which enables the colorful nanoworld to be explored under optical microscopes.

Electronic Supplementary Material

Download File(s)
12274_2015_779_MOESM1_ESM.mpg (4.6 MB)

References

1

Fabelinskii, I. L. Molecular Scattering of Light; Plenum Press: New York, 1968.

2

Yu, Z.; Brus, L. Rayleigh and Raman scattering from individual carbon nanotube bundles. J. Phys. Chem. B 2001, 105, 1123-1134.

3

Sfeir, M. Y.; Wang, F.; Huang, L. M.; Chuang, C. C.; Hone, J.; O'Brien, S. P.; Heinz, T. F.; Brus, L. E. Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering. Science 2004, 306, 1540-1543.

4

Berciaud, S.; Voisin, C.; Yan, H.; Chandra, B.; Caldwell, R.; Shan, Y.; Brus, L. E.; Hone, J.; Heinz, T. F. Excitons and high-order optical transitions in individual carbon nanotubes: A Rayleigh scattering spectroscopy study. Phys. Rev. B 2010, 81, 041414.

5

Malic, E.; Maultzsch, J.; Reich, S.; Knorr, A. Excitonic Rayleigh scattering spectra of metallic single-walled carbon nanotubes. Phys. Rev. B 2010, 82, 115439.

6

Joh, D. Y.; Kinder, J.; Herman, L. H.; Ju, S.; Segal, M. A.; Johnson, J. N.; ChanGarnet, K. L.; Park, J. Single-walled carbon nanotubes as excitonic optical wires. Nat. Nanotech. 2011, 6, 51-56.

7

Liu, K. H.; Hong, X. P.; Zhou, Q.; Jin, C. H.; Li, J. H.; Zhou, W. W.; Liu, J.; Wang, E. G.; Zettl, A.; Wang, F. High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices. Nat. Nanotech. 2013, 8, 917-922.

8

Sfeir, M. Y.; Beetz, T.; Wang, F.; Huang, L.; Huang, X. M. H.; Huang, M.; Hone, J.; O'Brien, S.; Misewich, J. A.; Heinz, T. F. et al. Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure. Science 2006, 312, 554-556.

9

Huang, S.; Qian, Y.; Chen, J.; Cai, Q.; Wan, L.; Wang, S.; Hu, W. Identification of the structures of superlong oriented single-walled carbon nanotube arrays by electrodeposition of metal and Raman spectroscopy. J. Am. Chem. Soc. 2008, 130, 11860-11861.

10

Chu, H.; Cui, R.; Wang, J.; Yang, J.; Li, Y. Visualization of individual single-walled carbon nanotubes under an optical microscope as a result of decoration with gold nanoparticles. Carbon 2011, 49, 1182-1188.

11

Zhang, R. F.; Zhang, Y. Y.; Zhang, Q.; Xie, H. H.; Wang, H. D.; Nie, J. Q.; Wen, Q.; Wei, F. Optical visualization of individual ultralong carbon nanotubes by chemical vapour deposition of titanium dioxide nanoparticles. Nat. Commun. 2013, 4, 1727.

12

Wang, J. T.; Li, T. Y.; Xia, B. Y.; Jin, X.; Wei, H. M.; Wu, W. Y.; Wei, Y.; Wang, J. P.; Liu, P.; Zhang, L. N. et al. Vapor-condensation-assisted optical microscopy for ultralong carbon nanotubes and other nanostructures. Nano Lett. 2014, 14, 3527-3533.

13

Klar, T. A.; Jakobs, S.; Dyba, M.; Egner, A.; Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. P. Natl. Acad. Sci. USA 2000, 97, 8206-8210.

14

Rust, M. J.; Bates, M.; Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3, 793-796.

15

Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.; Davidson, M. W.; Lippincott-Schwartz, J.; Hess, H. F. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313, 1642-1645.

16

Joh, D. Y.; Herman, L. H.; Ju, S. Y.; Kinder, J.; Segal, M. A.; Johnson, J. N.; Chan, G.; Park, J. On-chip Rayleigh imaging and spectroscopy of carbon nanotubes. Nano Lett. 2011, 11, 1-7.

17

Lefebvre, J.; Finnie, P. Polarized light microscopy and spectroscopy of individual single-walled carbon nanotubes. Nano Res. 2011, 4, 788-794.

18

Li, J.; He, Y. J.; Han, Y. M.; Liu, K.; Wang, J. P.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy. Nano Lett. 2012, 12, 4095-4101.

19

He, Y. J.; Li, D. Q.; Li, T. Y.; Lin, X. Y.; Zhang, J.; Wei, Y.; Liu, P.; Zhang, L. N.; Wang, J. P.; Li, Q. Q. et al. Metal-film-assisted ultra-clean transfer of single-walled carbon nanotubes. Nano Res. 2014, 7, 981-989.

20

Liu, K. H.; Deslippe, J.; Xiao, F. J.; Capaz, R. B.; Hong, X. P.; Aloni, S.; Zettl, A.; Wang, W. L.; Bai, X. D.; Louie, S. G.; Wang, E. G.; Wang, F. An atlas of carbon nanotube optical transitions. Nat. Nanotech. 2012, 7, 325-329.

21

Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47-99.

22

Wang, F.; Sfeir, M. Y.; Huang, L.; Huang, X. H.; Wu, Y.; Kim, J.; Hone, J.; O Brien, S.; Brus, L. E.; Heinz, T. F. Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy. Phys. Rev. Lett. 2006, 96, 167401.

23

Liu, K.; Jin, C.; Hong, X.; Kim, J.; Zettl, A.; Wang, E.; Wang, F. Van der Waals-coupled electronic states in incommensurate double-walled carbon nanotubes. Nature Phys. 2014, 10, 737-742.

24

Wu, W. Y.; Yue, J. Y.; Li, D. Q.; Lin, X. Y.; Zhu, F. Q.; Yin, X.; Zhu, J.; Dai, X. C.; Liu, P.; Wei, Y. et al. Interface dipole enhancement effect and enhanced Rayleigh scattering. Nano Res. 2015, 8, 303-319.

25

Walther, J. H.; Jaffe, R.; Halicioglu, T.; Koumoutsakos, P. Carbon nanotubes in water: Structural characteristics and energetics. J. Phys. Chem. B 2001, 105, 9980-9987.

26

Huang, B. D.; Xia, Y. Y.; Zhao, M. W.; Li, F.; Liu, X. D.; Ji, Y. J.; Song, C. Distribution patterns and controllable transport of water inside and outside charged single-walled carbon nanotubes. J. Chem. Phys. 2005, 122, 0847088.

27

Feynman, R. P.; Leighton, R. B.; Sands, M. The Feynman Lectures on Physics, Mainly Electromagnetism and Matter, Volume Ⅱ; Addison-Wesley: Reading, Massachusetts, 1977.

28

Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; Mclean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2, 338-342.

29

Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotech. 2006, 1, 60-65.

Nano Research
Pages 2721-2732
Cite this article:
Wu W, Yue J, Lin X, et al. True-color real-time imaging and spectroscopy of carbon nanotubes on substrates using enhanced Rayleigh scattering. Nano Research, 2015, 8(8): 2721-2732. https://doi.org/10.1007/s12274-015-0779-x

744

Views

33

Crossref

N/A

Web of Science

32

Scopus

2

CSCD

Altmetrics

Received: 14 February 2015
Revised: 27 March 2015
Accepted: 02 April 2015
Published: 29 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return