Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The quest for materials and devices that are capable of controlling heat flux continues to fuel research on thermal controlling devices. In this letter, using molecular dynamics simulations, we demonstrate that a partially clamped single-layer graphene can serve as a thermal modulator. The mismatch in phonon dispersion between the unclamped and clamped graphene sections results in phonon interface scattering, and the strength of interface scattering is tunable by controlling the clamp-graphene distance via applying the external pressure. Owing to the ultra-thin structure of graphene and its highly sensitive phonon dispersion to external physical interaction, the modulation efficiency—which is defined as the ratio of the highest to lowest heat flux—can reach as high as 150% at a moderate pressure of 50 GPa. This modulation efficiency can be further enhanced by arranging a number of clamps in series along the direction of the heat flux.
Li, B. W.; Wang, L.; Casati, G. Thermal diode: Rectification of heat flux. Phys. Rev. Lett. 2004, 93, 184301.
Terraneo, M.; Peyrard, M.; Casati, G. Controlling the energy flow in nonlinear lattices: A model for a thermal rectifier. Phys. Rev. Lett. 2002, 88, 094302.
Chang, C. W.; Okawa, D.; Majumdar, A.; Zettl, A. Solid-state thermal rectifier. Science 2006, 314, 1121-1124.
Tian, H.; Xie, D.; Yang, Y.; Ren, T. L.; Zhang, G.; Wang, Y. F.; Zhou, C. J.; Peng, P. G.; Wang, L. G.; Liu, L. T. A novel solid-state thermal rectifier based on reduced graphene oxide. Sci. Rep. 2012, 2, 523.
Li, N. B.; Ren, J.; Wang, L.; Zhang, G.; Haenggi, P.; Li, B. W. Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 2012, 84, 1045-1066.
Li, B.; Wang, L.; Casati, G. Nagative differential thermal resistance and thermal transistor. Appl. Phys. Lett. 2006, 88, 143501.
Wang, L.; Li, B. W. Thermal memory: A storage of phononic information. Phys. Rev. Lett. 2006, 101, 267203.
Wang, L.; Li, B. W. Thermal logic gates: Computation with phonons. Phys. Rev. Lett. 2007, 99, 177208.
Cahill, D. G.; Ford, W. K.; Goodson, K. E.; Mahan, G. D.; Majumdar, A.; Maris, H. J.; Merlin, R.; Phillpot, S. R. Nanoscale thermal transport. J. Appl. Phys. 2003. 93, 793-818.
Balandin, A. A.; Pokatilov, E. P.; Nika, D. L. Phonon engineering in hetero- and nanostructures. J. Nanoelectron. Optoelectron. 2007, 2, 140-170.
Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 2010, 3, 147-169.
Zhang, G.; Li, B. W. Impacts of doping on thermal and thermoelectric properties of nanomaterials. Nanoscale 2010, 2, 1058-1068.
Cahill, D. G. Extremes of heat conduction-Pushing the boundaries of the thermal conductivity of materials. MRS Bull. 2012, 37, 855-863.
Zhang, G.; Zhang, Y. W. Thermal conductivity of silicon nanowires: From fundamentals to phononic engineering. Phys. Status Solidi RRL. 2013, 7, 754-766.
Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nature Mater. 2011, 10, 569-581.
Sadeghi, M. M.; Pettes, M. T.; Shi, L. Thermal transport in graphene. Solid State Commun. 2012, 152, 1321-1330.
Shahil, K. M. F.; Balandin, A. A. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Commun. 2012, 152, 1331-1340.
Nika, D. L.; Balandin, A. A. Two-dimensional phonon transport in graphene. J. Phys. Condens. Mat. 2012, 24, 233203.
Yang, N.; Xu, X. F.; Zhang, G.; Li, B. W. Thermal transport in nanostructures. AIP Advances 2012, 2, 041410.
Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902-907.
Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X. S.; Yao, Z.; Huang, R.; Broido, D. et al. Two-dimensional phonon transport in supported graphene. Science 2010, 328, 213-216.
Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1-19.
Tersoff, J. Structural properties of sp3-bonded hydrogenated amorphous carbon. Phys. Rev. B 1991, 44, 12039-12042.
Lindsay, L.; Broido, D. A. Optimized tersoff and brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 2010, 81, 205441.
Xu, Z. P.; Buehler, M. J. Nanoengineering heat transfer performance at carbon nanotube interfaces. ACS Nano 2009, 3, 2767-2775.
Nosé, S. A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 1984, 81, 511-519.
Yang, N.; Zhang, G.; Li, B. W. Ultralow thermal conductivity of isotope-doped silicon nanowires. Nano Lett. 2008, 8, 276-280.
Ferrier, N.; Markovic, M.; Perriard, Y. Evaluation of an electromechanical clamping system for its integration in a piezoelectric linear motor for the generation of high linear forces. In 15th International Conference on Electrical Machines and Systems (ICEMS), Sapporo, Japan, 2012, pp 1-6.
Kohl, M. Shape memory microactuators; Springer-Verlag Berlin and Heidelberg GmbH & Co. K: Berlin, 2010.
Kim, H.; Najafi, K. An electrically-driven, large-deflection, high-force, micro pistion hydraulic actuator array for large-scale microfluidic systems. In Proceedings of 22nd IEEE International Conference on Micro Electro Mechanical Systems, Sorrento, Italy, 2009, pp 483-486.
Nayak, A. P.; Bhattacharyya, S.; Zhu, J.; Liu, J.; Wu, X.; Pandey, T.; Jin, C. Q.; Singh, A. K.; Akinwande, D.; Lin, J. F. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun. 2014, 5, 3731.
Guo, Z. X.; Zhang, D.; Gong, X. G. Manipulating thermal conductivity through substrate coupling. Phys. Rev. B 2011, 84, 075470.
Ong, Z. Y.; Pop, E. Effect of substrate modes on thermal transport in supported graphene. Phys. Rev. B 2011, 84, 075471.
Zhang, G.; Zhang, H. S. Thermal conduction and rectification in few-layer graphene Y junctions. Nanoscale 2011, 3, 4604-4607.
Gale, J. D. GULP: A computer program for the symmetry-adapted simulation of solids. J. Chem. Soc., Faraday Trans. 1997, 93, 629-637.
Yu, C. X.; Zhang, G. Impacts of length and geometry deformation on thermal conductivity of graphene nanoribbons. J. Appl. Phys. 2013, 113, 044306.
Xu, Y.; Li, Z. Y.; Duan, W. H. Thermal and thermoelectric properties of graphene. Small 2014, 10, 2182-2199.
Xu, Y.; Chen, X. B.; Gu, B. L.; Duan, W. H. Intrinsic anisotropy of thermal conductance in graphene nanoribbons. Appl. Phys. Lett. 2009, 95, 233116.
Huang, H. Q.; Xu, Y.; Zou, X. L.; Wu, J.; Duan, W. H. Tuning thermal conduction via extended defects in graphene. Phys. Rev. B 2013, 87, 205415.
Liu, X. Q.; Chen, J.; Yu, C. X.; Zhang, G. Comparison of isotopic effects on thermal conductivity of graphene nanoribbons and carbon nanotubes. Appl. Phys. Lett. 2013, 103, 013111.
Chen, X. B.; Tian, F. Y.; Persson, C.; Duan, W. H.; Chen, N. X. Interlayer interactions in graphites. Sci. Rep. 2013, 3, 3046.
Chen, J.; Zhang, G.; Li, B. W. Substrate coupling suppresses size dependence of thermal conductivity in supported graphene. Nanoscale 2013, 5, 532-536.
Cocemasov, A. I.; Nika, D. L.; Balandin, A. A. Phonons in twisted bilayer graphene. Phys. Rev. B 2013, 88, 035428.
Nika, D. L.; Cocemasov, A. I.; Balandin, A. A. Specific heat of twisted bilayer graphene: Engineering phonons by atomic plane rotations. Appl. Phys. Lett. 2014, 105, 031904.