Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
High-performance solar-blind UV (ultraviolet) photodetectors (PDs) based on low-dimension semiconducting nanostructures with high sensitivity, excellent cycle stability, and the ability to operate in harsh environments are critical for solar observations, space communication, UV astronomy, and missile tracking. In this study, TiO2-ZnTiO3 heterojunction nanowire-based PDs are successfully developed and used to detect solar-blind UV light. A photoconductive analysis indicates that the fabricated PDs are sensitive to UV illumination, with high sensitivity, good stability, and high reproducibility. Further analysis indicates that the rich existence of grain boundaries within the TiO2-ZnTiO3 nanowire can greatly decrease the dark current and recombination of the electron-hole pairs and thereby significantly increase the device's photosensitivity, spectra responsivity (1.1 × 106), and external quantum efficiency (4.3 × 108 %). Moreover, the PDs exhibit good photodetective performance with fast photoresponse and recovery and excellent thermal stability at temperatures as high as 175 ℃. According to these results, TiO2-ZnTiO3 heterojunction nanowires exhibit great potential for applications in high-performance optical electronics and PDs, particularly next-generation photodetectors with the ability to operate in harsh environments.
Du, X. L.; Mei, Z. X.; Liu, Z. L.; Guo, Y.; Zhang, T. C.; Hou, Y. N.; Zhang, Z.; Xue, Q. K.; Kuznetsov, A. Y. Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors. Adv. Mater. 2009, 21, 4625-4630.
Kong, X. Z.; Liu, C. X.; Dong, W.; Zhang, X. D.; Tao, C.; Shen, L.; Zhou, J. R.; Fei, Y. F.; Ruan, S. P. Metal- semiconductor-metal TiO2 ultraviolet detectors with Ni electrodes. App. Phys. Lett. 2009, 94, 123502.
Hou, Y. N.; Mei, Z. X.; Liu, Z. L.; Zhang, T. C.; Du, X. L. Mg0.55Zn0.45O solar-blind ultraviolet detector with high photoresponse performance and large internal gain. Appl. Phys. Lett. 2013, 98, 103506.
Liu, Z.; Luo, T.; Liang, B.; Chen, G.; Yu, G.; Xie, X.; Chen, D.; Shen, G. Z. High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res. 2013, 6, 775-783.
Yu, Y. Q.; Luo, L. B.; Wang, M. Z.; Wang, B.; Zeng, L. H.; Wu, C. Y.; Jie, J. S.; Liu, J. W.; Wang, L.; Yu, S. H. Interfacial states induced ultrasensitive ultraviolet light photodetector with resolved flux down to 85 photons per second. Nano Res. 2014, 8, 1-10.
Mello, M.; Scarascia, A.; De Guido, S.; Altamura, D.; Tasco, V.; De Vittorio, M.; Passaseo, A. High responsivity AlGaN-based UV sensors for operation in harsh conditions. Sensors 2008 IEEE 2008, 1588-1591.
Wei, T. C.; Tsai, D. S.; Ravadgar, P.; Ke, J. J.; Tsai, M.; Lien, D.; Huang, C.; Horng, R.; He, J. See-through Ga2O3 solar- blind photodetectors for use in harsh environments. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 3802006.
Pettersson, H.; Trägårdh, J.; Persson, A. I.; Landin, L.; Hessman, D.; Samuelson, L. Infrared photodetectors in heterostructure nanowires. Nano Lett. 2006, 6, 229-232.
Liu, X.; Liu, X.; Wang, J.; Liao, C. L.; Xiao, X. H.; Guo, S. S.; Jiang, C. Z.; Fan, Z. Y.; Wang, T.; Chen, X. S.; Lu, W.; Hu, W. D.; Liao, L. Transparent, high-performance InGaZnO/aligned-SnO2 nanowires composite thin-film transistors and their application in thotodetectors. Adv. Mater. 2014, 26, 7399-7404.
Zhang, F.; Ding, Y.; Zhang, Y.; Zhang, X. L.; Wang, Z. L. Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire. ACS Nano 2012, 6, 9229-9236.
Hadar, I.; Hitin, G. B.; Sitt, A.; Faust, A.; Banin, U. Polarization properties of semiconductor nanorod heterostructures: From single particles to the ensemble. J. Phys. Chem. Lett. 2013, 4, 502-507.
Punke, M.; Valouch, S.; Kettlitz, S. W.; Christ, N.; Gärtner, C.; Gerken, M.; Lemmer, U. Dynamic characterization of organic bulk heterojunction photodetectors. Appl. Phys. Lett. 2007, 91, 071118.
Sun, K.; Jing, Y.; Park, N.; Li, C.; Bando, Y.; Wang, D. L. Solution synthesis of large-scale, high-sensitivity ZnO/Si hierarchical nanoheterostructure photodetectors. J. Am. Chem. Soc. 2010, 132, 15465-15467.
Manna, S.; Das, S.; Mondal, S. P.; Singha, R.; Ray, S. K. High efficiency Si/CdS radial nanowire heterojunction photodetectors using etched Si nanowire templates. J. Phys. Chem. Lett. C 2012, 116, 7126-7133.
Wang, D. Y.; Jiang, Y. T.; Lin, C. C.; Li, S. S.; Wang, Y. T.; Chen, C. C.; Chen, C. W. Solution-processable pyrite FeS2 nanocrystals for the fabrication of heterojunction photodiodes with visible to NIR photodetection. Adv. Mater. 2012, 24, 3415-3420.
An, X. H.; Liu, F. Z.; Jung, Y. J.; Kar, S. Tunable graphene- silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 2013, 13, 909-916.
Deng, Y. X.; Luo, Z.; Conrad, N. J.; Liu, H.; Gong, Y. J.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Xu, X. F.; Ye, P. D. Black phosphorus-monolayer MoS2 van der waals heterojunction p-n diode. ACS Nano 2014, 8, 8292-8299.
Hu, L. F.; Yan, J.; Liao, M. Y.; Xiang, H. J.; Gong, X. G.; Zhang, L. D.; Fang, X. S. An optimized ultraviolet-a light photodetector with wide-range photoresponse based on ZnS/ZnO biaxial Nanobelt. Adv. Mater. 2012, 24, 2305-2309.
Hu, L. F.; Brewster, M. M.; Xu, X. J.; Tang, C. C.; Gradečak, S.; Fang, X. S. Heteroepitaxial growth of GaP/ZnS nanocable with superior optoelectronic response. Nano Lett. 2013, 13, 1941-1947.
Tian, W.; Zhai, T. Y.; Zhang, C.; Li, S. L.; Wang, X.; Liu, F.; Liu, D. Q.; Cai, X. K.; Tsukagoshi, K.; Golberg, D. Low-cost fully transparent ultraviolet photodetectors based on electrospun ZnO-SnO2 heterojunction nanofibers. Adv. Mater. 2013, 25, 4625-4630.
Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003-1009.
Jin, Y.; Wang, J.; Sun, B.; Blakesley, J. C.; Greenham, N. C. Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett. 2008, 8, 1649-1653.
Zou, J. P.; Zhang, Q.; Huang, K.; Marzari, N. Ultraviolet photodetectors based on anodic TiO2 nanotube arrays. J. Phys. Chem. Lett. C 2010, 114, 10725-10729.
Wang, Z. R.; Wang, H.; Liu, B.; Qiu, W. Z.; Zhang, J.; Ran, S. H.; Huang, H. T.; Xu, J.; Han, H. W.; Chen, D. et al. Transferable and flexible nanorod-assembled TiO2 cloths for dye-sensitized solar cells, photodetectors, and photocatalysts. ACS Nano 2011, 5, 8412-8419.
Guo, F. W.; Yang, B.; Yuan, Y. B.; Xiao, Z. G.; Dong, Q. F.; Bi, Y.; Huang, J. S. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 2012, 7, 798-802.
Liang, B.; Huang, H. T.; Liu, Z.; Chen, G.; Yu, G.; Luo, T.; Liao, L.; Chen, D.; Shen, G. Z. Ladder-like metal oxide nanowires: Synthesis, electrical transport, and enhanced light absorption properties. Nano Res. 2014, 7, 272-283.
Panigrahi, S.; Basak, D. Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection. Nanoscale 2011, 3, 2336-2341.
Liang, Y. C.; Liao, W. K. Annealing induced solid-state structure dependent performance of ultraviolet photodetectors made from binary oxide-based nanocomposites. RSC Adv. 2014, 4, 19482-19487.
Chen, D.; Zhang, H.; Hu, S.; Li, J. H. Preparation and enhanced photoelectrochemical performance of coupled bicomponent ZnO-TiO2 nanocomposites. J. Phys. Chem. C 2008, 112, 117-122.
Huang, K.; Zhang, Q.; Yang, F.; He, D. Y. Ultraviolet photoconductance of a single hexagonal WO3 nanowire. Nano Res. 2010, 3, 281-287.
Liu, X.; Gu, L. L.; Zhang, Q. P.; Wu, J. Y.; Long, Y. Z.; Fan, Z. Y. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun. 2014, 5, 4007.
Ahn, S. E.; Ji, H. J.; Kim, K.; Kim, G. T.; Bae, C. H.; Park, S. M.; Kim, Y. K.; Ha, J. S. Origin of the slow photoresponse in an individual sol-gel synthesized ZnO nanowire. Appl. Phys. Lett. 2007, 90, 153106.
Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. J. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622-625.
Fan, Z.; Wang, D.; Chang, P. C.; Tseng, W. Y.; Lu, J. G. ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 2004, 85, 5923-5925.
Hossain, F. M.; Nishii, J.; Takagi, S.; Ohtomo, A.; Fukumura, T.; Fujioka, H.; Ohno, H.; Koinuma, H.; Kawasaki, M. Modeling and simulation of polycrystalline ZnO thin-film transistors. J. Appl. Phys. 2003, 94, 7768-7777.
Hossain, F. M.; Nishii, J.; Takagi, S.; Sugihara, T.; Ohtomo, A.; Fukumura, T.; Koinuma, H.; Ohno, H.; Kawasaki, M. Modeling of grain boundary barrier modulation in ZnO invisible thin film transistors. Phys. E (Amsterdam, Neth. ) 2004, 21, 911-915.