AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tailoring thermal conductivity by engineering compositional gradients in Si1-xGex superlattices

Pablo Ferrando-Villalba1Aitor F. Lopeandía1( )Francesc Xavier Alvarez2( )Biplab Paul1,Carla de Tomás2Maria Isabel Alonso3Miquel Garriga3Alejandro R. Goñi3,4Jose Santiso5Gemma Garcia1Javier Rodriguez-Viejo1( )
Grup de Nanomaterials i MicrosistemesDepartament de FísicaUniversitat Autònoma de Barcelona08193Bellaterra, Spain
Grup de Física EstadísticaDepartament de FísicaUniversitat Autònoma de Barcelona08193Bellaterra, Spain
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)Campus UAB08193Bellaterra, Spain
ICREAPasseig Lluís Companys 2308010Barcelona, Spain
Institut Català de Nanociència i NanotecnologiaICN2-CSICCampus UAB08193Bellaterra, Spain

Present address: Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden

Show Author Information

Graphical Abstract

Abstract

The transport properties of artificially engineered superlattices (SLs) can be tailored by incorporating a high density of interfaces in them. Specifically, SiGe SLs with low thermal conductivity values have great potential for thermoelectric generation and nano-cooling of Si-based devices. Here, we present a novel approach for customizing thermal transport across nanostructures by fabricating Si/Si1-xGex SLs with well-defined compositional gradients across the SiGe layer from x = 0 to 0.60. We demonstrate that the spatial inhomogeneity of the structure has a remarkable effect on the heat-flow propagation, reducing the thermal conductivity to ~2.2 W·m-1·K-1, which is significantly less than the values achieved previously with non-optimized long-period SLs. This approach offers further possibilities for future applications in thermoelectricity.

References

1

Wang, Z. L. Energy harvesting for self-powered nanosystems. Nano Res. 2008, 1, 1-8.

2

Zhao, L. D.; Wu, H. J.; Hao, S. Q.; Wu, C. I.; Zhou, X. Y.; Biswas, K.; He, J. Q.; Hogan, T. P.; Uher, C.; Wolverton, C. et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ. Sci. 2013, 6, 3346-3355.

3

Balasubramanian, G.; Puri, I. K.; Böhm, M. C.; Leroy, F. Thermal conductivity reduction through isotope substitution in nanomaterials: Predictions from an analytical classical model and nonequilibrium molecular dynamics simulations. Nanoscale 2011, 3, 3714-3720.

4

Zhang, G.; Li, B. W. Impacts of doping on thermal and thermoelectric properties of nanomaterials. Nanoscale 2010, 2, 1058-1068.

5

Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 2010, 3, 147-169.

6

Rowe, D. M.; Fu, L. W.; Williams, S. G. K. Comments on the thermoelectric properties of pressure‐sintered Si0.8Ge0.2 thermoelectric alloys. J. Appl. Phys. 1993, 73, 4683-4685.

7

Joshi, G.; Lee, H.; Lan, Y. C.; Wang, X. W.; Zhu, G. H.; Wang, D. Z.; Gould, R. W.; Cuff, D. C.; Tang, M. Y.; Dresselhaus, M. S. et al. Enhanced thermoelectric figure-of- merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 2008, 8, 4670-4674.

8

Lee, S. M.; Cahill, D. G.; Venkatasubramanian, R. Thermal conductivity of Si-Ge superlattices. Appl. Phys. Lett. 1997, 70, 2957-2959.

9

Borca-Tasciuc, T.; Liu, W.; Liu, J. L.; Zeng, T. F.; Song, D. W.; Moore, C. D.; Chen, G.; Wang, K. L.; Goorsky, M. S.; Radetic, T. et al. Thermal conductivity of symmetrically strained Si/Ge superlattices. Superlattice. Microst. 2000, 28, 199-206.

10

Huxtable, S. T.; Abramson, A. R.; Tien, C. L.; Majumdar, A.; LaBounty, C.; Fan, X.; Zeng, G. H.; Bowers, J. E.; Shakouri, A.; Croke, E. T. Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices. Appl. Phys. Lett. 2002, 80, 1737-1739.

11

Chakraborty, S.; Kleint, C. A.; Heinrich, A.; Schneider, C. M.; Schumann, J.; Falke, M.; Teichert, S. Thermal conductivity in strain symmetrized Si/Ge superlattices on Si(111). Appl. Phys. Lett. 2003, 83, 4184-4186.

12

Liu, C. K.; Yu, C. K.; Chien, H. C.; Kuo, S. L.; Hsu, C. Y.; Dai, M. J.; Luo, L. G.; Huang, S. C.; Huang, M. J. Thermal conductivity of Si/SiGe superlattice films. J. Appl. Phys. 2008, 104, 114301.

13

Pernot, G.; Stoffel, M.; Savic, I.; Pezzoli, F.; Chen, P.; Savelli, G.; Jacquot, A.; Schumann, J.; Denker, U.; Moench, I. et al. Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nat. Mater. 2010, 9, 491-495.

14

Chen, P. X.; Katcho, N. A.; Feser, J. P.; Li, W.; Glaser, M.; Schmidt, O. G.; Cahill, D. G.; Mingo, N.; Rastelli, A. Role of surface-segregation-driven intermixing on the thermal transport through planar Si/Ge superlattices. Phys. Rev. Lett. 2013, 111, 115901.

15

Liu, J. L.; Khitun, A; Wang, K. L.; Liu, W. L.; Chen, G.; Xie, Q. H.; Thomas, S. G. Cross-plane thermal conductivity of self-assembled Ge quantum dot superlattices. Phys. Rev. B 2003, 67, 165333.

16

Alvarez-Quintana, J.; Alvarez, X.; Rodriguez-Viejo, J.; Jou, D.; Lacharmoise, P. D.; Bernardi, A.; Goñi, A. R.; Alonso, M. I. Cross-plane thermal conductivity reduction of vertically uncorrelated Ge/Si quantum dot superlattices. Appl. Phys. Lett. 2008, 93, 013112.

17

Chang, H. T.; Wang, S. Y.; Lee, S. W. Designer Ge/Si composite quantum dots with enhanced thermoelectric properties. Nanoscale 2014, 6, 3593-3598.

18

Cecchi, S.; Etzelstorfer, T.; Müller, E.; Samarelli, A.; Llin, L. F.; Chrastina, D.; Isella, G.; Stangl, J.; Paul, D. J. Ge/SiGe superlattices for thermoelectric energy conversion devices. J. Mater. Sci. 2013, 48, 2829-2835.

19

Samarelli, A.; Llin, L. F.; Cecchi, S.; Frigerio, J.; Etzelstorfer, T.; Mueller, E.; Zhang, Y.; Watling, J. R.; Chrastina, D.; Isella, G. et al. The thermoelectric properties of Ge/SiGe modulation doped superlattices. J. Appl. Phys. 2013, 113, 233704.

20

Kiselev, A. A.; Kim, K. W.; Stroscio, M. A. Thermal conductivity of Si/Ge superlattices: A realistic model with a diatomic unit cell. Phys. Rev. B 2000, 62, 6896-6899.

21

Broido, D. A.; Reinecke, T. L. Lattice thermal conductivity of superlattice structures. Phys. Rev. B 2004, 70, 081310.

22

Garg, J.; Bonini N.; Marzari N. High thermal conductivity in short-period superlattices. Nano Lett. 2011, 11, 5135-5141.

23

Savic, I.; Donadio, D.; Gyg, F.; Galli, G. Dimensionality and heat transport in Si-Ge superlattices. Appl. Phys. Lett. 2013, 102, 073113.

24

Alvarez, F. X.; Alvarez-Quintana, J.; Jou, D.; Viejo, J. R. Analytical expression for thermal conductivity of superlattices. J. Appl. Phys. 2010, 107, 084303.

25

Cheaito, R.; Duda, J. C.; Beechem, T. E.; Hattar, K.; Ihlefeld, J. F.; Medlin, D. L.; Rodriguez, M. A.; Campion, M. J.; Michael, J.; Piekos, E. S. et al. Experimental investigation of size effects on the thermal conductivity of silicon-germanium alloy thin films. Phys. Rev. Lett. 2012, 109, 195901.

26

Cahill, D. G.; Fisher, H. E.; Klitsner T.; Swartz, E. T.; Pohl, R. O. Thermal conductivity of a-Si: H thin films. Phys. Rev. B 1994, 50, 6077-6081.

27

Alvarez-Quintana J.; Rodríguez-Viejo J. Extension of the 3ω method to measure the thermal conductivity of thin films without a reference sample. Sensor Actuat. A 2008, 142, 232-236.

28

Tong, T.; Majumdar A. Reexamining the 3-omega technique for thin film thermal characterization. Rev. Sci. Inst. 2006, 77, 104902.

29

Zhylik, A.; Benediktovich, A.; Ulyanenkov, A.; Guerault, H.; Myronov, M.; Dobbie, A.; Leadley, D. R.; Ulyanenkova, T. High-resolution X-ray diffraction investigation of relaxation and dislocations in SiGe layers grown on (001), (011), and (111) Si substrates. J. Appl. Phys. 2011, 109, 123714.

30

Watling, J. R.; Douglas, J. P. A study of the impact of dislocations on the thermoelectric properties of quantum wells in the Si/SiGe materials system. J. Appl. Phys. 2011, 110, 114508.

Nano Research
Pages 2833-2841
Cite this article:
Ferrando-Villalba P, Lopeandía AF, Alvarez FX, et al. Tailoring thermal conductivity by engineering compositional gradients in Si1-xGex superlattices. Nano Research, 2015, 8(9): 2833-2841. https://doi.org/10.1007/s12274-015-0788-9

630

Views

32

Crossref

N/A

Web of Science

31

Scopus

1

CSCD

Altmetrics

Received: 04 November 2014
Revised: 07 April 2015
Accepted: 14 April 2015
Published: 09 July 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return