AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Reduced graphene oxide/silicon nanowire heterostructures with enhanced photoactivity and superior photoelectrochemical stability

Xing Zhong1,§Gongming Wang1,§Benjamin Papandrea1Mufan Li1Yuxi Xu1Yu Chen2Chih-Yen Chen1Hailong Zhou1Teng Xue2Yongjia Li2Dehui Li1Yu Huang2,3Xiangfeng Duan1,3( )
Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCalifornia90095USA
Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
California Nanosystems InstituteUniversity of CaliforniaLos AngelesCalifornia90095USA

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Silicon nanowires (SiNWs) have been widely studied as light harvesting antennas in photocatalysts due to their ability to absorb broad-spectrum solar radiation, but they are typically limited by poor photoelectrochemical stability. Here, we report the synthesis of reduced graphene oxide-SiNW (rGO-SiNW) heterostructures to achieve greatly improved photocatalytic activity and stability. The SiNWs were synthesized through a metal-assisted electroless etching process and functionalized with reduced graphene oxide (rGO) flakes through a chemical absorption process. Here, the rGO not only functions as a physical protection layer to isolate the SiNWs from the harsh electrochemical environment but also serves as a charge mediator to facilitate the charge separation and transport processes. Furthermore, the rGO may also function as a redox catalyst to ensure efficient utilization of photo-carriers for the desired chemical reactions. Photocatalytic dye degradation studies show that the photoactivity of the heterostructures can be significantly enhanced with an initial activation process and maintained without apparent decay over repeated reaction cycles. Electrochemical and photoelectrochemical studies indicate that the enhanced photoactivity and photostability can be attributed to the more efficient separation of photoexcited charge carriers in SiNWs and the reduced self-oxidation of the surface of the SiNWs during the photocatalytic dye degradation process. The ability to significantly improve the photocatalytic activity and stability in rGO-SiNW heterostructures can not only lead to more opportunities for the application of silicon-based photocatalysts/photoelectrodes for solar energy harvesting but also provide new insights into the stabilization of other unstable photocatalytic systems.

Electronic Supplementary Material

Download File(s)
nr-8-9-2850_ESM.pdf (770.1 KB)

References

1

Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294, 1313-1317.

2

Cui, Y.; Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851-853.

3

Cui, Y.; Duan, X. F.; Hu, J. T.; Lieber, C. M. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 2000, 104, 5213-5216.

4

Qu, Y. Q.; Liao, L.; Li, Y. J.; Zhang, H.; Huang, Y.; Duan, X. F. Electrically conductive and optically active porous silicon nanowires. Nano Lett. 2009, 9, 4539-4543.

5

Huang, R. G.; Tham, D.; Wang, D. W.; Heath, J. R. High performance ring oscillators from 10-nm wide silicon nanowire field-effect transistors. Nano Res. 2011, 4, 1005-1012.

6

Wang, D. W.; Sheriff, B. A.; McAlpine, M.; Heath, J. R. Development of ultra-high density silicon nanowire arrays for electronics applications. Nano Res. 2008, 1, 9-21.

7

Tang, J. Y.; Wang, H. T.; Lee, D. H.; Fardy, M.; Huo, Z. Y.; Russell, T. P.; Yang, P. D. Holey silicon as an efficient thermoelectric material. Nano Lett. 2010, 10, 4279-4283.

8

Jeong, S.; Garnett, E. C.; Wang, S.; Yu, Z. F.; Fan, S. H.; Brongersma, M. L.; McGehee, M. D.; Cui, Y. Hybrid silicon nanocone-polymer solar cells. Nano Lett. 2012, 12, 2971- 2976.

9

Garnett, E.; Yang, P. D. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082-1087.

10

Qu, Y. Q.; Duan, X. F. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 2013, 42, 2568-2580.

11

Thiyagu, S.; Devi, B. P.; Pei, Z. W. Fabrication of large area high density, ultra-low reflection silicon nanowire arrays for efficient solar cell applications. Nano Res. 2011, 4, 1136-1143.

12

Gunawardena, J. Silicon dreams of cells into symbols. Nat. Biotechnol. 2012, 30, 838-840.

13

Qing, Q.; Pal, S. K.; Tian, B. Z.; Duan, X. J.; Timko, B. P.; Cohen-Karni, T.; Murthy, V. N.; Lieber, C. M. Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc. Natl. Acad. Sci. USA 2010, 107, 1882-1887.

14

Wang, G. M.; Ling, Y. C.; Wang, H. Y.; Lu, X. H.; Li, Y. Chemically modified nanostructures for photoelectrochemical water splitting. J. Photochem. Photobiol. C 2014, 19, 35-51.

15

Wang, G. M.; Ling, Y. C.; Li, Y. Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 2012, 4, 6682-6691.

16

Zhou, H. L.; Qu, Y. Q.; Zeid, T.; Duan, X. F. Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ. Sci. 2012, 5, 6732-6743.

17

Qu, Y. Q.; Zhong, X.; Li, Y. J.; Liao, L.; Huang, Y.; Duan, X. F. Photocatalytic properties of porous silicon nanowires. J. Mater. Chem. 2010, 20, 3590-3594.

18

Qu, Y. Q.; Xue, T.; Zhong, X.; Lin, Y. C.; Liao, L.; Choi, J. N.; Duan, X. F. Heterointegration of Pt/Si/Ag nanowire photodiodes and their photocatalytic properties. Adv. Funct. Mater. 2010, 20, 3005-3011.

19

Qu, Y. Q.; Cheng, R.; Su, Q.; Duan, X. F. Plasmonic enhancements of photocatalytic activity of Pt/n-Si/Ag photodiodes using Au/Ag core/shell nanorods. J. Am. Chem. Soc. 2011, 133, 16730-16733.

20

Zhong, X.; Qu, Y. Q.; Lin, Y. C.; Liao, L.; Duan, X. F. Unveiling the formation pathway of single crystalline porous silicon nanowires. ACS Appl. Mater. Interfaces 2011, 3, 261-270.

21

Qu, Y. Q.; Zhou, H. L.; Duan, X. F. Porous silicon nanowires. Nanoscale 2011, 3, 4060-4068.

22

Qu, Y. Q.; Duan, X. F. One-dimensional homogeneous and heterogeneous nanowires for solar energy conversion. J. Mater. Chem. 2012, 22, 16171-16181.

23

Kenney, M. J.; Gong, M.; Li, Y. G.; Wu, J. Z.; Feng, J.; Lanza, M.; Dai, H. J. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 2013, 342, 836-840.

24

Chen, Y. W.; Prange, J. D.; Dühnen, S.; Park, Y.; Gunji, M.; Chidsey, C. E. D.; McIntyre, P. C. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 2011, 10, 539-544.

25

Hu, S.; Shaner, M. R.; Beardslee, J. A.; Lichterman, M.; Brunschwig, B. S.; Lewis, N. S. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 2014, 344, 1005-1009.

26

Qu, Y. Q.; Liao, L.; Cheng, R.; Wang, Y.; Lin, Y. C.; Huang, Y.; Duan, X. F. Rational design and synthesis of freestanding photoelectric nanodevices as highly efficient photocatalysts. Nano Lett. 2010, 10, 1941-1949.

27

Wang, P.; Han, L.; Zhu, C. Z.; Zhai, Y. M.; Dong, S. J. Aqueous-phase synthesis of Ag-TiO2-reduced graphene oxide and Pt-TiO2-reduced graphene oxide hybrid nanostructures and their catalytic properties. Nano Res. 2011, 4, 1153-1162.

28

Bai, J. W.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. F. Graphene nanomesh. Nat. Nanotechnol. 2012, 5, 190-194.

29

Bai, J. W.; Cheng, R.; Xiu, F. X.; Liao, L.; Wang, M. S.; Shailos, A.; Wang, K. L.; Huang, Y.; Duan, X. F. Very large magnetoresistance in graphene nanoribbons. Nat. Nanotechnol. 2010, 5, 655-659.

30

Liao, L.; Lin, Y. C.; Bao, M. Q.; Cheng, R.; Bai, J. W.; Liu, Y.; Qu, Y. Q.; Wang, K. L.; Huang, Y.; Duan, X. F. High- speed graphene transistors with a self-aligned nanowire gate. Nature 2010, 467, 305-308.

31

Liao, L.; Bai, J. W.; Cheng, R.; Lin, Y. C.; Jiang, S.; Huang, Y.; Duan, X. F. Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Nano Lett. 2010, 10, 1917- 1921.

32

Liu, Y.; Cheng, R.; Liao, L.; Zhou, H. L.; Bai, J. W.; Liu, G.; Liu, L. X.; Huang, Y.; Duan, X. F. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2011, 2, 579.

33

Wang, G. M.; Qian, F.; Saltikov, C. W.; Jiao, Y. Q.; Li, Y. Microbial reduction of graphene oxide by Shewanella. Nano Res. 2011, 4, 563-570.

34

Wang, B.; Liddell, K. L.; Wang, J. J.; Koger, B.; Keating, C. D.; Zhu, J. Oxide-on-graphene field effect bio-ready sensors. Nano Res. 2014, 7, 1263-1270.

35

Li, X. Y.; Li, J.; Zhou, X. M.; Ma, Y. Y.; Zheng, Z. P.; Duan, X. F.; Qu, Y. Q. Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy. Carbon 2014, 66, 713-719.

36

Chen, S. S.; Brown, L.; Levendorf, M.; Cai, W. W.; Ju, S. Y.; Edgeworth, J.; Li, X. S.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D. et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 2011, 5, 1321-1327.

37

Xiang, Q. J.; Yu, J. G. Graphene-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 2013, 4, 753-759.

38

Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 2012, 41, 782-796.

39

Wu, H. Y.; Xu, M.; Da, P. M.; Li, W. J.; Jia, D. S.; Zheng, G. F. WO3-reduced graphene oxide composites with enhanced charge transfer for photoelectrochemical conversion. Phys. Chem. Chem. Phys. 2013, 15, 16138-16142.

40

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll- to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574-578.

41

Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339-1339.

42

Wang, G. M.; Ling, Y. C.; Lu, X. H.; Zhai, T.; Qian, F.; Tong, Y. X.; Li, Y. A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. Nanoscale 2013, 5, 4129-4133.

43

Debgupta, J.; Mandal, S.; Kalita, H.; Aslam, M.; Patra, A.; Pillai, V. Photophysical and photoconductivity properties of thiol-functionalized graphene-CdSe QD composites. RSC Adv. 2014, 4, 13788-13795.

44

Stratakis, E.; Sawa, K.; Konios, D.; Petridis, C.; Kymakis, E. Improving the efficiency of organic photovoltaics by tuning the work-function of graphene oxide hole transporting layers. Nanoscale 2014, 6, 6925-6931.

45

Yusoff, A. B.; Kim, H. P.; Jang, J. Inverted organic solar cells with TiOx cathode and graphene oxide anode buffer layers. Sol. Energy Mater. Sol. Cells 2013, 109, 63-69.

Nano Research
Pages 2850-2858
Cite this article:
Zhong X, Wang G, Papandrea B, et al. Reduced graphene oxide/silicon nanowire heterostructures with enhanced photoactivity and superior photoelectrochemical stability. Nano Research, 2015, 8(9): 2850-2858. https://doi.org/10.1007/s12274-015-0790-2

581

Views

35

Crossref

N/A

Web of Science

37

Scopus

4

CSCD

Altmetrics

Received: 09 January 2015
Revised: 05 April 2015
Accepted: 14 April 2015
Published: 24 July 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return