Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We demonstrate a facile method combining colloidal lithography, selective ion-exchange, and the in situ reduction of Ag ions (Ag+) for the fabrication of multi-segmented barcode nanorods. First, polymer multilayer films were prepared by spin-coating alternating thin films of polystyrene and polyacrylic acid (PAA), and then multi-segmented polymer nanorods were fabricated via reactive ion etching with colloidal masks. Second, Ag nanoparticles (Ag NPs) were incorporated into the PAA segments by an ion exchange and the in situ reduction of the Ag+. The selective incorporation of the Ag NPs permitted the modification of the specific bars of the nanorods. Lastly, the Ag NP/polymer composite nanorods were released from the substrate to form suspensions for further coding applications. By increasing the number of segments and changing the length of each segment in the nanorods, the coding capacity of nanorods was improved. More importantly, this method can easily realize the density tuning of Ag NPs in different segments of a single nanorod by varying the composition of the PAA segments. We believe that numerous other coded materials can also be obtained, which introduces new approaches for fabricating barcoded nanomaterials.
Huang, X. N.; Huang, G.; Zhang, S. R.; Sagiyama, K.; Togao, O.; Ma, X. P.; Wang, Y. G.; Li, Y.; Soesbe, T. C.; Sumer, B. D. et al. Multi-chromatic pH-activatable 19F-MRI nanoprobes with binary ON/OFF pH transitions and chemical-shift barcodes. Angew. Chem., Int. Ed. 2013, 52, 8074-8078.
Wilson, R.; Cossins, A. R.; Spiller, D. G. Encoded microcarriers for high-throughput multiplexed detection. Angew. Chem., Int. Ed. 2006, 45, 6104-6017.
Finkel, N. H.; Lou, X. H.; Wang, C. Y.; He, L. Barcoding the microworld. Anal. Chem. 2004, 76, 352A-359A.
Han, M. Y.; Gao, X. H.; Su, J. Z.; Nie, S. M. Quantum- dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 2001, 19, 631-635.
Pregibon, D. C.; Toner, M.; Doyle, P. S. Multifunctional encoded particles for high-throughput biomolecule analysis. Science 2007, 315, 1393-1396.
Gershon, D. Microarray technology: An array of opportunities. Nature 2002, 416, 885-891.
Nicewarner-Peña, S. R.; Freeman, R. G.; Reiss, B. D.; He, L.; Peña, D. J.; Walton, I. D.; Cromer, R.; Keating, C. D.; Natan, M. J. Submicrometer metallic barcodes. Science 2001, 294, 137-141.
Birtwell, S.; Morgan, H. Microparticle encoding technologies for high-throughput multiplexed suspension assays. Integr. Biol. 2009, 1, 345-362.
Banholzer, M. J.; Millstone, J. E.; Qin, L. D.; Mirkin, C. A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37, 885-897.
Zhang, Y.; Wang, H.; Nie, J. F.; Zhou, H.; Shen, G. L.; Yu, R. Q. Mussel-inspired fabrication of encoded polymer films for electrochemical identification. Electrochem. Commun. 2009, 11, 1936-1939.
Stoermer, R. L.; Cederquist, K. B.; McFarland, S. K.; Sha, M. Y.; Penn, S. G.; Keating, C. D. Coupling molecular beacons to barcoded metal nanowires for multiplexed, sealed chamber DNA bioassays. J. Am. Chem. Soc. 2006, 128, 16892-16903.
Qin, L. D.; Banholzer, M. J.; Millstone, J. E.; Mirkin, C. A. Nanodisk codes. Nano Lett. 2007, 7, 3849-3853.
Nam, J. M.; Thaxton, C. S.; Mirkin, C. A. Nanoparticle-based bio-barcodes for the ultrasensitive detection of proteins. Science 2003, 301, 1884-1886.
Tok, J. B. -H.; Chuang, F. Y. S.; Kao, M. C.; Rose, K. A.; Pannu, S. S.; Sha, M. Y.; Chakarova, G.; Penn, S. G.; Dougherty, G. M. Metallic striped nanowires as multiplexed immunoassay platforms for pathogen detection. Angew. Chem., Int. Ed. 2006, 45, 6900-6904.
Eastman, P. S.; Ruan, W. M.; Doctolero, M.; Nuttall, R.; de Feo, G.; Park, J. S.; Chu, J. S. F.; Cooke, P.; Gray, J. W.; Li, S. et al. Qdot nanobarcodes for multiplexed gene expression analysis. Nano Lett. 2006, 6, 1059-1064.
Wang, J. Barcoded metal nanowires. J. Mater. Chem. 2008, 18, 4017-4020.
Zhao, Y. J.; Shum, H. C.; Chen, H. S.; Adams, L. L. A.; Gu, Z. Z.; Weitz, D. A. Microfluidic generation of multifunctional quantum dot barcode particles. J. Am. Chem. Soc. 2011, 133, 8790-8793.
Seo, D.; Yoo, C. I.; Jung, J.; Song, H. Ag-Au-Ag heterometallic nanorods formed through directed anisotropic growth. J. Am. Chem. Soc. 2008, 130, 2940-2941.
Rauf, S.; Glidle, A.; Cooper, J. M. Production of quantum dot barcodes using biological self-assembly. Adv. Mater. 2009, 21, 4020-4024.
Battersby, B. J.; Bryant, D.; Meutermans, W.; Matthews, D.; Smythe, M. L.; Trau, M. Toward larger chemical libraries: Encoding with fluorescent colloids in combinatorial chemistry. J. Am. Chem. Soc. 2000, 122, 2138-2139.
Kuang, M.; Wang, D. Y.; Bao, H. B.; Gao, M. Y.; Möhwald, H.; Jiang, M. Fabrication of multicolor-encoded microspheres by tagging semiconductor nanocrystals to hydrogel spheres. Adv. Mater. 2005, 17, 267-270.
Dejneka, M. J.; Streltsov, A.; Pal, S.; Frutos, A. G.; Powell, C. L.; Yost, K.; Yuen, P. K.; Müller, U.; Lahiri, J. Rare earth-doped glass microbarcodes. Proc. Natl. Acad. Sci. USA 2003, 100, 389-393.
Hurst, S. J.; Payne, E. K.; Qin, L. D.; Mirkin, C. A. Multisegmented one-dimensional nanorods prepared by hard- template synthetic methods. Angew. Chem., Int. Ed. 2006, 45, 2672-2692.
Sattayasamitsathit, S.; Burdick, J.; Bash, R.; Kanatharana, P.; Thavarungkul, P.; Wang, J. Alloy nanowires barcodes based on nondestructive X-ray fluorescence readout. Anal. Chem. 2007, 79, 7571-7575.
Wanekaya, A. K.; Chen, W.; Myung, N. V.; Mulchandani, A. Nanowire-based electrochemical biosensors. Electroanalysis 2006, 18, 533-550.
Li, X.; Wang, T. Q.; Zhang, J. H.; Zhu, D. F.; Zhang, X.; Ning, Y.; Zhang, H.; Yang, B. Controlled fabrication of fluorescent barcode nanorods. ACS Nano 2010, 4, 4350-4360.
Zhao, Y. J.; Cheng, Y.; Shang, L. R.; Wang, J.; Xie, Z. Y.; Gu, Z. Z. Microfluidic synthesis of barcode particles for multiplex assays. Small 2015, 11, 151-174.
Zhang, Y. H.; Zhang, L. X.; Deng, R. R.; Tian, J.; Zong, Y.; Jin, D. Y.; Liu, X. G. Multicolor barcoding in a single upconversion crystal. J. Am. Chem. Soc. 2014, 136, 4893- 4896.
Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607-609.
Service, R. F. Solar energy. Can the upstarts top silicon? Science 2008, 319, 718-720.
Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater. 2010, 22, 4249-4269.
Zhang, J. H.; Yang, B. Patterning colloidal crystals and nanostructure arrays by soft lithography. Adv. Funct. Mater. 2010, 20, 3411-3424.
Kim, Y. W.; Lee, D. K.; Lee, K. J.; Min, B. R.; Kim, J. H. In situ formation of silver nanoparticles within an amphiphilic graft copolymer film. J. Polym. Sci., Part B: Polym. Phys. 2007, 45, 1283-1290.
Chen, M. J.; Zhao, Y. N.; Yang, W. T.; Yin, M. Z. UV- irradiation-induced templated/in-situ formation of ultrafine silver/polymer hybrid nanoparticles as antibacterial. Langmuir 2013, 29, 16018-16024.
Cocca, M.; D'Orazio, L. Novel silver/polyurethane nanocomposite by in situ reduction: Effects of the silver nanoparticles on phase and viscoelastic behavior. J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 344-350.
Gupta, S.; Uhlmann, P.; Agrawal, M.; Chapuis, S.; Oertel, U.; Stamm, M. Immobilization of silver nanoparticles on responsive polymer brushes. Macromolecules 2008, 41, 2874-2879.
Henglein, A.; Giersig, M. Formation of colloidal silver nanoparticles: Capping action of citrate. J. Phys. Chem. B 1999, 103, 9533-9539.
Deshmukh, R. D.; Composto, R. J. Surface segregation and formation of silver nanoparticles created in situ in poly(methyl methacrylate) films. Chem. Mater. 2007, 19, 745-754.