AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI)

Botao Qiao1,2,§Jin-Xia Liang3,4,§Aiqin Wang2Cong-Qiao Xu3Jun Li3( )Tao Zhang2( )Jingyue (Jimmy) Liu1( )
Department of PhysicsArizona State UniversityTempeArizona85287USA
State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of EducationTsinghua UniversityBeijing100084China
Guizhou Provincial Key Laboratory of Computational Nano-Material ScienceGuizhou Normal CollegeGuiyang550018China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Supported noble metal nanoparticles (including nanoclusters) are widely used in many industrial catalytic processes. While the finely dispersed nanostructures are highly active, they are usually thermodynamically unstable and tend to aggregate or sinter at elevated temperatures. This scenario is particularly true for supported nanogold catalysts because the gold nanostructures are easily sintered at high temperatures, under reaction conditions, or even during storage at ambient temperature. Here, we demonstrate that isolated Au single atoms dispersed on iron oxide nanocrystallites (Au1/FeOx) are much more sinteringresistant than Au nanostructures, and exhibit extremely high reaction stability for CO oxidation in a wide temperature range. Theoretical studies revealed that the positively charged and surface-anchored Au1 atoms with high valent states formed significant covalent metal-support interactions (CMSIs), thus providing the ultra-stability and remarkable catalytic performance. This work may provide insights and a new avenue for fabricating supported Au catalysts with ultra-high stability.

Electronic Supplementary Material

Download File(s)
nr-8-9-2913_ESM.pdf (9.5 MB)

References

1

Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 2003, 299, 1688–1691.

2

Chen, M. S.; Goodman, D. W. The structure of catalytically active gold on titania. Science 2004, 306, 252–255.

3

Judai, K.; Abbet, S.; Worz, A. S.; Heiz, U.; Henry, C. R. Low-temperature cluster catalysis. J. Am. Chem. Soc. 2004, 126, 2732–2737.

4

Herzing, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.; Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 2008, 321, 1331–1335.

5

Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer-Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 2008, 454, 981–983.

6

Vajda, S.; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L. A.; Ballentine, G. A.; Elam, J. W.; Catillon-Mucherie, S.; Redfern, P. C.; Mehmood, F. et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mater. 2009, 8, 213–216.

7

Haruta, M. When gold is not noble: Catalysis by nanoparticles. Chem. Rec. 2003, 3, 75–87.

8

Remediakis, I. N.; Lopez, N.; Nørskov, J. K. CO oxidation on rutile-supported Au nanoparticles. Angew. Chem., Int. Ed. 2005, 44, 1824–1826.

9

Yang, X. -F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

10

Ouyang, R. H.; Liu, J. -X.; Li, W. -X. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions. J. Am. Chem. Soc. 2012, 135, 1760–1771.

11

Hansen, T. W.; DeLaRiva, A. T.; Challa, S. R.; Datye, A. K. Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening? Acc. Chem. Res. 2013, 46, 1720–1730.

12

Li, W. Z.; Kovarik, L.; Mei, D. H.; Liu, J.; Wang, Y.; Peden, C. H. F. Stable platinum nanoparticles on specific MgAl2O4 spinel facets at high temperatures in oxidizing atmospheres. Nat. Commun. 2013, 4, 2481.

13

Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309.

14

Hughes, M. D.; Xu, Y. -J.; Jenkins, P.; McMorn, P.; Landon, P.; Enache, D. I.; Carley, A. F.; Attard, G. A.; Hutchings, G. J.; King, F. et al. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 2005, 437, 1132–1135.

15

Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332–334.

16

Grirrane, A.; Corma, A.; García, H. Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics. Science 2008, 322, 1661–1664.

17

Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C. M.; Bäumer, M. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 2010, 327, 319–322.

18

Haruta, M. Spiers memorial Lecture Role of perimeter interfaces in catalysis by gold nanoparticles. Faraday Discuss. 2011, 152, 11–32.

19

Ball, L. T.; Lloyd-Jones, G. C.; Russell, C. A. Gold-catalyzed direct arylation. Science 2012, 337, 1644–1648.

20

Bond, G. C.; Louis, C.; Thompson, D. T. Catalysis by Gold; Imperial College Press: London, 2006.

21

Corti, C. W.; Holliday, R. J.; Thompson, D. T. Progress towards the commercial application of gold catalysts. Top. Catal. 2007, 44, 331–343.

22

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

23

Wei, H. S.; Liu, X.; Wang, A.; Zhang, L.; Qiao, B.; Yang, X.; Huang, Y.; Miao, S.; Liu, J.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

24

Lin, J.; Wang, A. Q.; Qiao, B. T.; Liu, X. Y.; Yang, X.; Wang, X.; Liang, J.; Li, J.; Liu, J.; Zhang, T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 2013, 135, 15314–15317.

25

Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935–938.

26

Zhai, Y. P.; Pierre, D.; Si, R.; Deng, W.; Ferrin, P.; Nilekar, A. U.; Peng, G.; Herron, J. A.; Bell, D. C.; Saltsburg, H. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions. Science 2010, 329, 1633–1636.

27

Huang, Z. W.; Gu, X.; Cao, Q. Q.; Hu, P. P.; Hao, J. M.; Li, J. H.; Tang, X. F. Catalytically active single-atom sites fabricated from silver particles. Angew. Chem., Int. Ed. 2012, 57, 4198–4203.

28

Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

29

Flytzani-Stephanopoulos, M.; Gates, B. C. Atomically dispersed supported metal catalysts. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 545–574.

30

Ghosh, T. K.; Nair, N. N. Rh1/γ-Al2O3 single-atom catalysis of O2 activation and co oxidation: Mechanism, effects of hydration, oxidation state, and cluster size. ChemCatChem 2013, 5, 1811–1821.

31

Zhang, X. F.; Guo, J. J.; Guan, P. F.; Liu, C. J.; Huang, H.; Xue, F. H.; Dong, X. L.; Pennycook, S. J.; Chisholm, M. F. Catalytically active single-atom niobium in graphitic layers. Nat. Commun. 2013, 4, 1924.

32

Sun, S. H.; Zhang, G. X.; Gauquelin, N.; Chen, N.; Zhou, J. G.; Yang, S. L.; Chen, W. F.; Meng, X. B.; Geng, D. S.; Banis, M. N. et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 2013, 3, 1–9.

33

Yang, M.; Allard, L. F.; Flytzani-Stephanopoulos, M. Atomically dispersed Au–(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction. J. Am. Chem. Soc. 2013, 135, 3768–3771.

34

Moses-DeBusk, M.; Yoon, M.; Allard, L. F.; Mullins, D. R.; Wu, Z. L.; Yang, X. F.; Veith, G.; Stocks, G. M.; Narula, C. K. CO oxidation on supported single Pt atoms: Experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J. Am. Chem. Soc. 2013, 135, 12634–12645.

35

Peterson, E. J.; DeLaRiva, A. T.; Lin, S.; Johnson, R. S.; Guo, H.; Miller, J. T.; Hun Kwak, J.; Peden, C. H. F.; Kiefer, B.; Allard, L. F. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 2014, 5, 4885.

36

Kistler, J. D.; Chotigkrai, N.; Xu, P. H.; Enderle, B.; Praserthdam, P.; Chen, C. -Y.; Browning, N. D.; Gates, B. C. A single-site platinum CO oxidation catalyst in Zeolite KLTL: Microscopic and spectroscopic determination of the locations of the platinum atoms. Angew. Chem., Int. Ed. 2014, 53, 8904–8907.

37

Liang, J. -X.; Lin, J.; Yang, X. -F.; Wang, A. -Q.; Qiao, B. -T.; Liu, J.; Zhang, T.; Li, J. Theoretical and experimental investigations on single-atom catalysis: Ir1/FeOx for CO oxidation. J. Phys. Chem. C 2014, 118, 21945–21951.

38

Li, Z. -Y.; Yuan, Z.; Li, X. -N.; Zhao, Y. -X.; He, S. -G. CO oxidation catalyzed by single gold atoms supported on aluminum oxide clusters. J. Am. Chem. Soc. 2014, 136, 14307–14313.

39

Liu, Y.; Jia, C. -J.; Yamasaki, J.; Terasaki, O.; Schüth, F. Highly active iron oxide supported gold catalysts for CO oxidation: How small must the gold nanoparticles be? Angew. Chem., Int. Ed. 2010, 49, 5771–5775.

40

Comotti, M.; Li, W. -C.; Spliethoff, B.; Schuth, F. Support effect in high activity gold catalysts for CO oxidation. J. Am. Chem. Soc. 2006, 128, 917–924.

41

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

42

Vayssieres, L.; Sathe, C.; Butorin, S. M.; Shuh, D. K.; Nordgren, J.; Guo, J. One-dimensional quantum-confinement effect in α-Fe2O3 ultrafine nanorod arrays. Adv. Mater. 2005, 17, 2320–2323.

43

Sandratskii, L. M.; Uhl, M.; Kübler, J. Band theory for electronic and magnetic properties of a-Fe2O3. J. Phys. Condens. Matter 1996, 8, 983.

44

Wang, X. G.; Weiss, W.; Shaikhutdinov, S. K.; Ritter, M.; Petersen, M.; Wagner, F.; Schlögl, R.; Scheffler, M. The hematite (α-Fe2O3) (0001) surface: Evidence for domains of distinct chemistry. Phys. Rev. Lett. 1998, 81, 1038–1041

45

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

46

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865– 3868.

47

Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Szotek, Z.; Temmerman, W. M.; Sutton, A. P. Electronic structure and elastic properties of strongly correlated metal oxides from first principles: LSDA+U SIC-LSDA and EELS study of UO2 and NiO. Phys. Status Solidi A 1998, 166, 429–443.

48

Henkelman, G.; Jonsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 1999, 111, 7010–7022.

49

Freund, H. J.; Meijer, G.; Scheffler, M.; Schlogl, R.; Wolf, M. CO oxidation as a prototypical reaction for heterogeneous processes. Angew. Chem., Int. Ed. 2011, 50, 10064–10094.

50

Shelef, M.; McCabe, R. W. Twenty-five years after introduction of automotive catalysts: What next? Catal. Today 2000, 62, 35–50.

51

Xie, X. W.; Li, Y.; Liu, Z. -Q.; Haruta, M.; Shen, W. J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009, 458, 746–749.

52

Fu, Q.; Li, W. -X.; Yao, Y. X.; Liu, H. Y.; Su, H. -Y.; Ma, D.; Gu, X. -K.; Chen, L. M.; Wang, Z.; Zhang, H. et al. Interface- confined ferrous centers for catalytic oxidation. Science 2010, 328, 1141–1144.

53

Fang, H. -C.; Li, Z. H.; Fan, K. -N. CO oxidation catalyzed by a single gold atom: Benchmark calculations and the performance of DFT methods. Phys. Chem. Chem. Phys. 2011, 13, 13358–13369.

54

Aguilar-Guerrero, V.; Gates, B. C. Kinetics of CO oxidation catalyzed by highly dispersed CeO2-supported gold. J. Catal. 2008, 260, 351–357.

55

Deng, W. L.; Carpenter, C.; Yi, N.; Flytzani-Stephanopoulos, M. Comparison of the activity of Au/CeO2 and Au/Fe2O3 catalysts for the CO oxidation and the water-gas shift reactions. Top. Catal. 2007, 44, 199–208.

56

Landman, U.; Yoon, B.; Zhang, C.; Heiz, U.; Arenz, M. Factors in gold nanocatalysis: Oxidation of CO in the non- scalable size regime. Top. Catal. 2007, 44, 145–158.

57

Zhao, K. F.; Qiao, B. T.; Wang, J. H.; Zhang, Y. J.; Zhang, T. A highly active and sintering-resistant Au/FeOx-hydroxyapatite catalyst for CO oxidation. Chem. Commun. 2011, 47, 1779– 781.

58

Wang, Y. G.; Yoon, Y.; Glezakou, V. A.; Li, J.; Rousseau, R. The role of reducible oxide/metal cluster charge transfer: New insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. J. Am. Chem. Soc. 2013, 135, 10673–10683.

59

Novotný, Z.; Argentero, G.; Wang, Z. M.; Schmid, M.; Diebold, U.; Parkinson, G. S. Ordered array of single adatoms with remarkable thermal stability: Au/Fe3O4(001). Phys. Rev. Lett. 2012, 108, 216103.

60

Bartholomew, C. H. Mechanisms of catalyst deactivation. Appl. Catal. A 2001, 212, 17–60.

61

Wang, Y. -G.; Mei, D. H.; Li, J.; Rousseau, R. DFT+U study on the localized electronic states and their potential role during H2O dissociation and CO oxidation processes on CeO2(111) Surface. J. Phys. Chem. C 2013, 117, 23082– 23089.

62

Yuan, Z.; Li, X. -N.; He, S. -G. CO oxidation promoted by gold atoms loosely attached in AuFeO3 cluster anions. J. Phsy. Chem. Lett. 2014, 5, 1585–1590.

63

Song, W. Y.; Hensen, E. J. M. Mechanistic aspects of the water–gas shift reaction on isolated and clustered Au atoms on CeO2(110): A density functional theory study. ACS Catal. 2014, 4, 1885–1892.

64

Liu, Z. -P.; Jenkins, S. J.; King, D. A. Origin and activity of oxidized gold in water-gas-shift catalysis. Phys. Rev. Lett. 2005, 94, 196102.

65

Camellone, M. F.; Fabris, S. Reaction mechanisms for the CO oxidation on Au/CeO2 catalysts: Activity of substitutional Au3+/Au+ cations and deactivation of supported Au+ adatoms. J. Am. Chem. Soc. 2009, 131, 10473–10483.

66

Li, L.; Wang, A. Q.; Qiao, B. T.; Lin, J.; Huang, Y. Q.; Wang, X. D.; Zhang, T. Origin of the high activity of Au/FeOx for low-temperature CO oxidation: Direct evidence for a redox mechanism. J. Catal. 2013, 299, 90–100.

67

Glendening, E. D.; Weinhold, F. Natural resonance theory: I. General formalism. J. Comput. Chem. 1998, 19, 593–609.

68

Pyykkö, P.; Atsumi, M. Molecular single-bond covalent radii for elements 1–118. Chem. —Eur. J. 2009, 15, 186–197.

69

Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. : Condens. Matter 2009, 21, 084204.

70

Böhme, D. K.; Schwarz, H. Gas-phase catalysis by atomic and cluster metal ions: The ultimate single-site catalysts. Angew. Chem., Int. Ed. 2005, 44, 2336–2354.

71

Thomas, J. M.; Saghi, Z.; Gai, P. L. Can a single atom serve as the active site in some heterogeneous catalysts? Top. Catal. 2011, 54, 588–594.

Nano Research
Pages 2913-2924
Cite this article:
Qiao B, Liang J-X, Wang A, et al. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Research, 2015, 8(9): 2913-2924. https://doi.org/10.1007/s12274-015-0796-9
Part of a topical collection:

897

Views

445

Crossref

N/A

Web of Science

429

Scopus

29

CSCD

Altmetrics

Received: 23 March 2015
Revised: 08 April 2015
Accepted: 14 April 2015
Published: 16 July 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return