AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Achieving a high magnetization in sub-nanostructured magnetite films by spin-flipping of tetrahedral Fe3+ cations

Tun Seng Herng1,2Wen Xiao1Sock Mui Poh2,3Feizhou He5Ronny Sutarto5Xiaojian Zhu6Runwei Li6Xinmao Yin2,3,4Caozheng Diao2Yang Yang1Xuelian Huang1Xiaojiang Yu2Yuan Ping Feng4Andrivo Rusydi2,3,4( )Jun Ding1( )
Department of Materials Science and EngineeringNational University of Singapore7 Engineering Drive 1Singapore119260Singapore
Singapore Synchrotron Light SourceNational University of Singapore5 Research LinkSingapore117603Singapore
NUSNNI-NanocoreDepartment of PhysicsNational University of Singapore2 Science Drive 3Singapore117542Singapore
Department of PhysicsNational University of Singapore2 Science Drive 3Singapore117542Singapore
Canadian Light SourceSaskatoonSaskatchewanS7N 2V3Canada
Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringNingbo315201China
Show Author Information

Graphical Abstract

Abstract

Magnetite Fe3O4 (ferrite) has attracted considerable interest for its exceptional physical properties: It is predicted to be a semimetallic ferromagnetic with a high Curie temperature, it displays a metal-insulator transition, and has potential oxide-electronics applications. Here, we fabricate a high-magnetization (> 1 Tesla) high-resistance (~0.1 Ω·cm) sub-nanostructured (grain size < 3 nm) Fe3O4 film via grain-size control and nano-engineering. We report a new phenomenon of spin-flipping of the valence-spin tetrahedral Fe3+ in the sub-nanostructured Fe3O4 film, which produces the high magnetization. Using soft X-ray magnetic circular dichroism and soft X-ray absorption, both at the Fe L3, 2- and O K-edges, and supported by first-principles and charge-transfer multiple calculations, we observe an anomalous enhancement of double exchange, accompanied by a suppression of the superexchange interactions because of the spin-flipping mechanism via oxygen at the grain boundaries. Our result may open avenues for developing spin-manipulated giant magnetic Fe3O4-based compounds via nano-grain size control.

Electronic Supplementary Material

Download File(s)
nr-8-9-2935_ESM.pdf (4 MB)

References

1

Gutfleisch, O.; Willard, M. A.; Brück, E.; Chen, C. H.; Sankar, S. G.; Liu, J. P. Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 2011, 23, 821–842.

2

Smith, J.; Wijn, H. P. J. Ferrites; Philips' Technical Library: Eindhoven, Holland, 1959.

3

Verwey, E. J. W. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 1939, 144, 327–328.

4

Senn, M. S.; Wright, J. P.; Attfield, J. P. Charge order and three-site distortions in the Verwey structure of magnetite. Nature 2012, 481, 173–176.

5

Walz, F. The Verwey transition - A topical review. J. Phys. - Condes. Matter 2002, 14, R285–R340.

6

Arora, S. K.; Wu, H. -C.; Choudhary, R. J.; Shvets, I. V.; Mryasov, O. N.; Yao, H. Z.; Ching, W. Y. Giant magnetic moment in epitaxial Fe3O4 thin films on MgO(100). Phys. Rev. B 2008, 77, 134443.

7

Orna, J.; Algarabel, P. A.; Morellón, L.; Pardo, J. A.; de Teresa, J. M.; López Antón, R.; Bartolomé, F.; García, L. M.; Bartolomé, J.; Cezar, J. C. et al. Origin of the giant magnetic moment in epitaxial Fe3O4 thin films. Phys. Rev. B 2010, 81, 144420.

8

Krycka, K. L.; Borchers, J. A.; Booth, R. A.; Ijiri, Y.; Hasz, K.; Rhyne, J. J.; Majetich, S. A. Origin of surface canting within Fe3O4 nanoparticles. Phys. Rev. Lett. 2014, 113, 147203.

9

Fujii, T.; de Groot, F. M. F.; Sawatzky, G. A.; Voogt, F. C.; Hibma, T.; Okada, K. In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B 1999, 59, 3195–3202.

10

Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730.

11

Stöhr, J.; Siegmann, H. C. Magnetism: From fundamentals to nanoscale dynamics; Springer-Verlag: Berlin, 2006.

12

Kuiper, P.; Searle, B. G.; Duda, L. -C.; Wolf, R. M.; van der Zaag, P. J. Fe L2, 3 linear and circular magnetic dichroism of Fe3O4. J. Electron. Spectrosc. 1997, 86, 107–113.

13

de Groot, F.; Kotani, A. Core Level Spectroscopy of Solids; Taylor & Francis: New York, 2008.

14

Stavitski, E.; de Groot, F. M. F. The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. Micron 2010, 41, 687–694.

15

Jeng, H. -T.; Guo, G. Y.; Huang, D. J. Charge-orbital ordering and Verwey transition in magnetite. Phys. Rev. Lett. 2004, 93, 156403.

16

Luo, J. T.; Yang, Y. C.; Zhu, X. Y.; Chen, G.; Zeng, F.; Pan, F. Enhanced electromechanical response of Fe-doped ZnO films by modulating the chemical state and ionic size of the Fe dopant. Phys. Rev. B 2010, 82, 014116.

17

Cheng, C. Structure and magnetic properties of the Fe3O4 (001) surface: Ab initio studies. Phys. Rev. B 2005, 71, 052401.

18

Pentcheva, R.; Wendler, F.; Meyerheim, H. L.; Moritz, W.; Jedrecy, N.; Scheffler, M. Jahn-Teller stabilization of a "polar" metal oxide surface: Fe3O4(001). Phys. Rev. Lett. 2005, 94, 126101.

19

Eerenstein, W.; Palstra, T. T. M.; Hibma, T.; Celotto, S. Origin of the increased resistivity in epitaxial Fe3O4 films. Phys. Rev. B 2002, 66, 201101.

20

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

21

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

22

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

23

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

24

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin- zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

25

Reuter, K.; Scheffler, M. Composition, structure, and stability of RuO2 (110) as a function of oxygen pressure. Phys. Rev. B 2001, 65, 035406.

Nano Research
Pages 2935-2945
Cite this article:
Herng TS, Xiao W, Poh SM, et al. Achieving a high magnetization in sub-nanostructured magnetite films by spin-flipping of tetrahedral Fe3+ cations. Nano Research, 2015, 8(9): 2935-2945. https://doi.org/10.1007/s12274-015-0798-7

751

Views

19

Crossref

N/A

Web of Science

21

Scopus

0

CSCD

Altmetrics

Received: 06 January 2015
Revised: 08 April 2015
Accepted: 20 April 2015
Published: 10 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return