AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Prediction of large-gap quantum spin hall insulator and Rashba-Dresselhaus effect in two-dimensional g-TlA (A = N, P, As, and Sb) monolayer films

Xinru Li1Ying Dai1( )Yandong Ma1Wei Wei1Lin Yu1Baibiao Huang2
School of PhysicsShandong UniversityJinan250100China
State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
Show Author Information

Graphical Abstract

Abstract

A new family of two-dimensional (2D) topological insulators (TIs) comprising g-TlA (A = N, P, As, and Sb) monolayers constructed by Tl and group-Ⅴ elements is predicted by first-principles calculations and molecular-dynamics (MD) simulations. The geometric stability, band inversion, nontrivial edge states, and electric polarity are investigated to predict the large-gap quantum spin Hall insulator and Rashba-Dresselhaus effects. The MD results reveal that the g-TlA monolayers remain stable even at room temperature. The g-TlA (A = As, Sb) monolayers become TIs under the influence of strong spin-orbit couplings with large bulk bandgaps of 131 and 268 meV, respectively. A single band inversion is observed in each g-TlA (A = As, Sb) monolayer, indicating a nontrivial topological nature. Furthermore, the topological edge states are described by introducing a sufficiently wide zigzag-nanoribbon. A Dirac point in the middle of the bulk gap connects the valence- and conduction-band edges. The Fermi velocity near the Dirac point with a linear band dispersion is ~0.51 × 106 m/s, which is comparable to that of many other 2D nanomaterials. More importantly, owing to the broken inversion symmetry normal to the plane of the g-TlA films, a promising Rashba-Dresselhaus effect with the parameter up to 0.85 eV·? is observed in the g-TlA (A = As, Sb) monolayers. Our findings regarding 2D topological g-TlA monolayers with room-temperature bandgaps, intriguing topological edge states, and a promising Rashba-Dresselhaus effect are of fundamental value and suggest potential applications in nanoelectronic devices.

References

1

Tanaka, Y.; Ren, Z.; Sato, T.; Nakayama, K.; Souma, S.; Takahashi, T.; Segawa, K; Ando, Y. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 2012, 8, 800–803.

2

Zhang, Y.; He, K.; Chang, C. -Z.; Song, C. -L.; Wang, L. -L.; Chen, X.; Jia, J. -F.; Fang, Z.; Dai, X.; Shan, W. -Y. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584–588.

3

Zhao, S. L.; Wang, H. A.; Zhou, Y.; Liao, L.; Jiang, Y.; Yang, X.; Chen, G. C.; Lin, M.; Wang, Y.; Peng, H. L. et al. Controlled synthesis of single-crystal SnSe nanoplates. Nano Res. 2015, 8, 288–295.

4

Chang, C. -Z.; Zhang, Z. C.; Li, K.; Feng, X.; Zhang. J. S.; Guo, M. H.; Feng, Y.; Wang, J.; Wang, L. -L.; Ma, X. -C. et al. Simultaneous electrical-field-effect modulation of both top and bottom dirac surface states of epitaxial thin films of three-dimensional topological insulators. Nano Lett. 2015, 15, 1090–1094.

5

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

6

Kane, C. L.; Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801.

7

König, M.; Wiedmann, S.; Brüne, C.; Roth, A.; Buhmann, H.; Molenkamp, L. W.; Qi, X. -L.; Zhang, S. -C. Quantum spin Hall insulator state in HgTe quantum wells. Science 2007, 318, 766–770.

8

Knez, I.; Du, R. -R.; Sullivan, G. Andreev reflection of helical edge modes in InAs/GaSb quantum spin Hall insulator. Phys. Rev. Lett. 2012, 109, 186603.

9

Koga, T.; Nitta, J.; Takayanagi, H.; Datta, S. Spin-filter device based on the Rashba effect using a nonmagnetic resonant tunneling diode. Phys. Rev. Lett. 2002, 88, 126601.

10

Crepaldi, A.; Moreschini, L.; Autès, G.; Tournier-Colletta, C.; Moser, S.; Virk, N.; Berger, H.; Bugnon, P.; Chang, Y. J.; Kern, K. Giant ambipolar Rashba effect in the semiconductor BiTeI. Phys. Rev. Lett. 2012, 109, 096803.

11

Ma, Y. D.; Dai, Y.; Yin, N.; Jing, T.; Huang, B. B. Ideal two- dimensional systems with a gain Rashba-type spin splitting: SrFBiS2 and BiOBiS2 nanosheets. J. Mater. Chem. C 2014, 2, 8539–8545.

12

Ma, Y. D.; Dai, Y.; Wei, W.; Li, X. R.; Huang, B. B. Emergence of electric polarity in BiTeX (X= Br and I) monolayers and the giant Rashba spin splitting. Phys. Chem. Chem. Phys. 2014, 16, 17603–17609.

13

Liu, Q. H.; Guo, Y. Z.; Freeman, A. J. Tunable Rashba effect in two-dimensional LaOBiS2 films: Ultrathin candidates for spin field effect transistors. Nano Lett. 2013, 13, 5264–5270.

14

Murakami, S. Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling. Phys. Rev. Lett. 2006, 97, 236805.

15

Liu, Z.; Liu, C. -X.; Wu, Y. -S.; Duan, W. -H.; Liu, F.; Wu, J. Stable nontrivial Z2 topology in ultrathin Bi (111) films: A first-principles study. Phys. Rev. Lett. 2011, 107, 136805– 136809.

16

Wang, Z. F.; Chen, L.; Liu, F. Tuning topological edge states of Bi (111) bilayer film by edge adsorption. Nano Lett. 2014, 14, 2879–2883.

17

Zhang, P. F.; Liu, Z.; Duan, W. H.; Liu, F.; Wu, J. Topological and electronic transitions in a Sb (111) nanofilm: The interplay between quantum confinement and surface effect. Phys. Rev. B 2012, 85, 201410–201413.

18

Si, C.; Liu, J. W.; Xu, Y.; Wu, J.; Gu, B. -L, Duan, W. H. Functionalized germanene as a prototype of large-gap two- dimensional topological insulators. Phys. Rev. B 2014, 89, 115429–115433.

19

Ma, Y. D.; Dai, Y.; Wei, W.; Huang, B. B.; Whangbo, M. -H. Strain-induced quantum spin Hall effect in methyl-substituted germanane GeCH3. Sci. Rep. 2014, 4, 7297.

20

Drummond, N. D.; Zolyomi, V.; Fal'Ko, V. I. Electrically tunable band gap in silicene. Phys. Rev. B 2012, 85, 075423.

21

Ma, Y. D.; Dai, Y.; Kou, L. Z.; Frauenheim, T.; Heine, T. Robust two-dimensional topological insulators in methyl- functionalized bismuth, antimony, and lead bilayer films. Nano Lett. 2015, 15, 1083–1089.

22

Chuang, F. -C.; Yao, L. -Z.; Huang, Z. -Q.; Liu, Y. -T.; Hsu, C. -H.; Das, T.; Lin, H.; Bansil, A. Prediction of large-gap two-dimensional topological insulators consisting of bilayers of group Ⅲ elements with Bi. Nano Lett. 2014, 14, 2505–2508.

23

Wang, G. A.; Zhu, X. G.; Wen, J.; Chen, X.; He, K.; Wang, L. L.; Ma, X. C.; Liu, Y.; Dai, X.; Fang, Z. et al. Atomically smooth ultrathin films of topological insulator Sb2Te3. Nano Res. 2010, 3, 874–880.

24

Yang, F.; Miao, L.; Wang, Z. F.; Yao, M. -Y.; Zhu, F. F.; Song, Y. R.; Wang, M. -X, Xu, J. -P.; Fedorov, A. V.; Sun, Z. Spatial and energy distribution of topological edge states in single Bi (111) bilayer. Phys. Rev. Lett. 2012, 109, 016801– 016805.

25

Hirahara, T.; Fukui, N.; Shirasawa, T.; Yamada, M.; Aitani, M.; Miyazaki, H.; Matsunami, M.; Kimura, S.; Takahashi, T.; Hasegawa, S. et al. Atomic and electronic structure of ultrathin Bi (111) films grown on Bi2Te3 (111) substrates: Evidence for a strain-induced topological phase transition. Phys. Rev. Lett. 2012, 109, 227401.

26

Fukui, N.; Hirahara, T.; Shirasawa, T.; Takahashi, T.; Kobayashi, K.; Hasegawa, S. Surface relaxation of topological insulators: Influence on the electronic structure. Phys. Rev. B 2012, 85, 115426.

27

Wang, Z. F.; Yao, M. -Y.; Ming, W. M.; Miao, L.; Zhu, F. F.; Liu, C. H.; Gao, C. L.; Qian, D.; Jia, J. -F.; Liu, F. Creation of helical Dirac fermions by interfacing two gapped systems of ordinary fermions. Nat. Commun. 2013, 4, 1384.

28

Lin, H.; Markiewicz, R. S.; Wray, L. A.; Fu, L.; Hasan, M. Z.; Bansil, A. Single-Dirac-cone topological surface states in the TlBiSe2 class of topological semiconductors. Phys. Rev. Lett. 2010, 105, 036404.

29

Xu, S. -Y.; Xia, Y.; Wray, L. A.; Jia, S.; Meier, F.; Dil, J. H.; Osterwalder, J.; Slomski, B.; Bansil, A.; Lin, H. et al. Topological phase transition and texture inversion in a tunable topological insulator. Science 2011, 332, 560–564.

30

Sato, T.; Segawa, K.; Kosaka, K.; Souma, S.; Nakayama, K.; Eto, K.; Minami, T.; Ando, Y.; Takahashi, T. Unexpected mass acquisition of Dirac fermions at the quantum phase transition of a topological insulator. Nat. Phys. 2011, 7, 840–844.

31

Niu, C. W.; Dai, Y.; Yu, L.; Guo, M.; Ma, Y. D.; Huang, B. B. Quantum anomalous Hall effect in doped ternary chalcogenide topological insulators TlBiTe2 and TlBiSe2. Appl. Phys. Lett. 2011, 99, 142502.

32

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane- wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

33

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

34

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin- zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

35

Peng, Q.; Liang, C.; Ji, W.; De, S. A first principles investigation of the mechanical properties of g-TIN. Model. Numer. Sim. Mater. Sci. 2012, 2, 76–84.

36

Şahin, H.; Cahangirov, S.; Topsakal, M.; Bekaroglu, E.; Akturk, E.; Senger, R. T.; Ciraci, S. Monolayer honeycomb structures of group-Ⅳ elements and Ⅲ-Ⅴ binary compounds: First-principles calculations. Phys. Rev. B 2009, 80, 155453.

37

Lin, H.; Markiewicz, R. S.; Wray, L. A.; Fu, L.; Hasan, M. Z.; Bansil, A. Single-Dirac-cone topological surface states in the TlBiSe2 class of topological semiconductors. Phys. Rev. Lett. 2010, 105, 036404.

38

Liu, C. -C.; Feng, W. X.; Yao, Y. G. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 2011, 107, 076802.

39

Li, X. R.; Dai, Y.; Ma, Y. D.; Huang, B. B. Electronic and magnetic properties of honeycomb transition metal monolayers: First-principles insights. Phys. Chem. Chem. Phys. 2014, 16, 13383–13389.

40

Qian, X. F.; Fu, L.; Li, J. Topological crystalline insulator nanomembrane with strain-tunable band gap. Nano Res. 2015, 8, 967–979.

41

Zhang, Y.; He, K.; Chang, C. -Z.; Song, C. -L.; Wang, L. -L.; Chen, X.; Jia, J. -F.; Fang, Z.; Dai, X.; Shan, W. -Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584–588.

42

Miao, M. S.; Yan, Q.; Van de Walle, C. G.; Lou, W. K.; Li, L. L.; Chang, K. Polarization-driven topological insulator transition in a GaN/InN/GaN quantum well. Phys. Rev. Lett. 2012, 109, 186803.

43

Crepaldi, A.; Moreschini, L.; Autès, G.; Tournier-Colletta, C.; Moser, S.; Virk, N.; Berger, H.; Bugnon, P.; Chang, Y. J.; Kern, K. et al. Giant ambipolar Rashba effect in the semiconductor BiTeI. Phys. Rev. Lett. 2012, 109, 096803.

Nano Research
Pages 2954-2962
Cite this article:
Li X, Dai Y, Ma Y, et al. Prediction of large-gap quantum spin hall insulator and Rashba-Dresselhaus effect in two-dimensional g-TlA (A = N, P, As, and Sb) monolayer films. Nano Research, 2015, 8(9): 2954-2962. https://doi.org/10.1007/s12274-015-0800-4

681

Views

50

Crossref

N/A

Web of Science

49

Scopus

3

CSCD

Altmetrics

Received: 07 February 2015
Revised: 07 April 2015
Accepted: 20 April 2015
Published: 24 July 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return