Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article

Prediction of large-gap quantum spin hall insulator and Rashba-Dresselhaus effect in two-dimensional g-TlA (A = N, P, As, and Sb) monolayer films

Xinru Li1Ying Dai1()Yandong Ma1Wei Wei1Lin Yu1Baibiao Huang2
School of PhysicsShandong UniversityJinan250100China
State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

A new family of two-dimensional (2D) topological insulators (TIs) comprising g-TlA (A = N, P, As, and Sb) monolayers constructed by Tl and group-Ⅴ elements is predicted by first-principles calculations and molecular-dynamics (MD) simulations. The geometric stability, band inversion, nontrivial edge states, and electric polarity are investigated to predict the large-gap quantum spin Hall insulator and Rashba-Dresselhaus effects. The MD results reveal that the g-TlA monolayers remain stable even at room temperature. The g-TlA (A = As, Sb) monolayers become TIs under the influence of strong spin-orbit couplings with large bulk bandgaps of 131 and 268 meV, respectively. A single band inversion is observed in each g-TlA (A = As, Sb) monolayer, indicating a nontrivial topological nature. Furthermore, the topological edge states are described by introducing a sufficiently wide zigzag-nanoribbon. A Dirac point in the middle of the bulk gap connects the valence- and conduction-band edges. The Fermi velocity near the Dirac point with a linear band dispersion is ~0.51 × 106 m/s, which is comparable to that of many other 2D nanomaterials. More importantly, owing to the broken inversion symmetry normal to the plane of the g-TlA films, a promising Rashba-Dresselhaus effect with the parameter up to 0.85 eV·? is observed in the g-TlA (A = As, Sb) monolayers. Our findings regarding 2D topological g-TlA monolayers with room-temperature bandgaps, intriguing topological edge states, and a promising Rashba-Dresselhaus effect are of fundamental value and suggest potential applications in nanoelectronic devices.

References

1

Tanaka, Y.; Ren, Z.; Sato, T.; Nakayama, K.; Souma, S.; Takahashi, T.; Segawa, K; Ando, Y. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 2012, 8, 800–803.

2

Zhang, Y.; He, K.; Chang, C. -Z.; Song, C. -L.; Wang, L. -L.; Chen, X.; Jia, J. -F.; Fang, Z.; Dai, X.; Shan, W. -Y. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584–588.

3

Zhao, S. L.; Wang, H. A.; Zhou, Y.; Liao, L.; Jiang, Y.; Yang, X.; Chen, G. C.; Lin, M.; Wang, Y.; Peng, H. L. et al. Controlled synthesis of single-crystal SnSe nanoplates. Nano Res. 2015, 8, 288–295.

4

Chang, C. -Z.; Zhang, Z. C.; Li, K.; Feng, X.; Zhang. J. S.; Guo, M. H.; Feng, Y.; Wang, J.; Wang, L. -L.; Ma, X. -C. et al. Simultaneous electrical-field-effect modulation of both top and bottom dirac surface states of epitaxial thin films of three-dimensional topological insulators. Nano Lett. 2015, 15, 1090–1094.

5

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

6

Kane, C. L.; Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801.

7

König, M.; Wiedmann, S.; Brüne, C.; Roth, A.; Buhmann, H.; Molenkamp, L. W.; Qi, X. -L.; Zhang, S. -C. Quantum spin Hall insulator state in HgTe quantum wells. Science 2007, 318, 766–770.

8

Knez, I.; Du, R. -R.; Sullivan, G. Andreev reflection of helical edge modes in InAs/GaSb quantum spin Hall insulator. Phys. Rev. Lett. 2012, 109, 186603.

9

Koga, T.; Nitta, J.; Takayanagi, H.; Datta, S. Spin-filter device based on the Rashba effect using a nonmagnetic resonant tunneling diode. Phys. Rev. Lett. 2002, 88, 126601.

10

Crepaldi, A.; Moreschini, L.; Autès, G.; Tournier-Colletta, C.; Moser, S.; Virk, N.; Berger, H.; Bugnon, P.; Chang, Y. J.; Kern, K. Giant ambipolar Rashba effect in the semiconductor BiTeI. Phys. Rev. Lett. 2012, 109, 096803.

11

Ma, Y. D.; Dai, Y.; Yin, N.; Jing, T.; Huang, B. B. Ideal two- dimensional systems with a gain Rashba-type spin splitting: SrFBiS2 and BiOBiS2 nanosheets. J. Mater. Chem. C 2014, 2, 8539–8545.

12

Ma, Y. D.; Dai, Y.; Wei, W.; Li, X. R.; Huang, B. B. Emergence of electric polarity in BiTeX (X= Br and I) monolayers and the giant Rashba spin splitting. Phys. Chem. Chem. Phys. 2014, 16, 17603–17609.

13

Liu, Q. H.; Guo, Y. Z.; Freeman, A. J. Tunable Rashba effect in two-dimensional LaOBiS2 films: Ultrathin candidates for spin field effect transistors. Nano Lett. 2013, 13, 5264–5270.

14

Murakami, S. Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling. Phys. Rev. Lett. 2006, 97, 236805.

15

Liu, Z.; Liu, C. -X.; Wu, Y. -S.; Duan, W. -H.; Liu, F.; Wu, J. Stable nontrivial Z2 topology in ultrathin Bi (111) films: A first-principles study. Phys. Rev. Lett. 2011, 107, 136805– 136809.

16

Wang, Z. F.; Chen, L.; Liu, F. Tuning topological edge states of Bi (111) bilayer film by edge adsorption. Nano Lett. 2014, 14, 2879–2883.

17

Zhang, P. F.; Liu, Z.; Duan, W. H.; Liu, F.; Wu, J. Topological and electronic transitions in a Sb (111) nanofilm: The interplay between quantum confinement and surface effect. Phys. Rev. B 2012, 85, 201410–201413.

18

Si, C.; Liu, J. W.; Xu, Y.; Wu, J.; Gu, B. -L, Duan, W. H. Functionalized germanene as a prototype of large-gap two- dimensional topological insulators. Phys. Rev. B 2014, 89, 115429–115433.

19

Ma, Y. D.; Dai, Y.; Wei, W.; Huang, B. B.; Whangbo, M. -H. Strain-induced quantum spin Hall effect in methyl-substituted germanane GeCH3. Sci. Rep. 2014, 4, 7297.

20

Drummond, N. D.; Zolyomi, V.; Fal'Ko, V. I. Electrically tunable band gap in silicene. Phys. Rev. B 2012, 85, 075423.

21

Ma, Y. D.; Dai, Y.; Kou, L. Z.; Frauenheim, T.; Heine, T. Robust two-dimensional topological insulators in methyl- functionalized bismuth, antimony, and lead bilayer films. Nano Lett. 2015, 15, 1083–1089.

22

Chuang, F. -C.; Yao, L. -Z.; Huang, Z. -Q.; Liu, Y. -T.; Hsu, C. -H.; Das, T.; Lin, H.; Bansil, A. Prediction of large-gap two-dimensional topological insulators consisting of bilayers of group Ⅲ elements with Bi. Nano Lett. 2014, 14, 2505–2508.

23

Wang, G. A.; Zhu, X. G.; Wen, J.; Chen, X.; He, K.; Wang, L. L.; Ma, X. C.; Liu, Y.; Dai, X.; Fang, Z. et al. Atomically smooth ultrathin films of topological insulator Sb2Te3. Nano Res. 2010, 3, 874–880.

24

Yang, F.; Miao, L.; Wang, Z. F.; Yao, M. -Y.; Zhu, F. F.; Song, Y. R.; Wang, M. -X, Xu, J. -P.; Fedorov, A. V.; Sun, Z. Spatial and energy distribution of topological edge states in single Bi (111) bilayer. Phys. Rev. Lett. 2012, 109, 016801– 016805.

25

Hirahara, T.; Fukui, N.; Shirasawa, T.; Yamada, M.; Aitani, M.; Miyazaki, H.; Matsunami, M.; Kimura, S.; Takahashi, T.; Hasegawa, S. et al. Atomic and electronic structure of ultrathin Bi (111) films grown on Bi2Te3 (111) substrates: Evidence for a strain-induced topological phase transition. Phys. Rev. Lett. 2012, 109, 227401.

26

Fukui, N.; Hirahara, T.; Shirasawa, T.; Takahashi, T.; Kobayashi, K.; Hasegawa, S. Surface relaxation of topological insulators: Influence on the electronic structure. Phys. Rev. B 2012, 85, 115426.

27

Wang, Z. F.; Yao, M. -Y.; Ming, W. M.; Miao, L.; Zhu, F. F.; Liu, C. H.; Gao, C. L.; Qian, D.; Jia, J. -F.; Liu, F. Creation of helical Dirac fermions by interfacing two gapped systems of ordinary fermions. Nat. Commun. 2013, 4, 1384.

28

Lin, H.; Markiewicz, R. S.; Wray, L. A.; Fu, L.; Hasan, M. Z.; Bansil, A. Single-Dirac-cone topological surface states in the TlBiSe2 class of topological semiconductors. Phys. Rev. Lett. 2010, 105, 036404.

29

Xu, S. -Y.; Xia, Y.; Wray, L. A.; Jia, S.; Meier, F.; Dil, J. H.; Osterwalder, J.; Slomski, B.; Bansil, A.; Lin, H. et al. Topological phase transition and texture inversion in a tunable topological insulator. Science 2011, 332, 560–564.

30

Sato, T.; Segawa, K.; Kosaka, K.; Souma, S.; Nakayama, K.; Eto, K.; Minami, T.; Ando, Y.; Takahashi, T. Unexpected mass acquisition of Dirac fermions at the quantum phase transition of a topological insulator. Nat. Phys. 2011, 7, 840–844.

31

Niu, C. W.; Dai, Y.; Yu, L.; Guo, M.; Ma, Y. D.; Huang, B. B. Quantum anomalous Hall effect in doped ternary chalcogenide topological insulators TlBiTe2 and TlBiSe2. Appl. Phys. Lett. 2011, 99, 142502.

32

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane- wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

33

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

34

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin- zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

35

Peng, Q.; Liang, C.; Ji, W.; De, S. A first principles investigation of the mechanical properties of g-TIN. Model. Numer. Sim. Mater. Sci. 2012, 2, 76–84.

36

Şahin, H.; Cahangirov, S.; Topsakal, M.; Bekaroglu, E.; Akturk, E.; Senger, R. T.; Ciraci, S. Monolayer honeycomb structures of group-Ⅳ elements and Ⅲ-Ⅴ binary compounds: First-principles calculations. Phys. Rev. B 2009, 80, 155453.

37

Lin, H.; Markiewicz, R. S.; Wray, L. A.; Fu, L.; Hasan, M. Z.; Bansil, A. Single-Dirac-cone topological surface states in the TlBiSe2 class of topological semiconductors. Phys. Rev. Lett. 2010, 105, 036404.

38

Liu, C. -C.; Feng, W. X.; Yao, Y. G. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 2011, 107, 076802.

39

Li, X. R.; Dai, Y.; Ma, Y. D.; Huang, B. B. Electronic and magnetic properties of honeycomb transition metal monolayers: First-principles insights. Phys. Chem. Chem. Phys. 2014, 16, 13383–13389.

40

Qian, X. F.; Fu, L.; Li, J. Topological crystalline insulator nanomembrane with strain-tunable band gap. Nano Res. 2015, 8, 967–979.

41

Zhang, Y.; He, K.; Chang, C. -Z.; Song, C. -L.; Wang, L. -L.; Chen, X.; Jia, J. -F.; Fang, Z.; Dai, X.; Shan, W. -Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584–588.

42

Miao, M. S.; Yan, Q.; Van de Walle, C. G.; Lou, W. K.; Li, L. L.; Chang, K. Polarization-driven topological insulator transition in a GaN/InN/GaN quantum well. Phys. Rev. Lett. 2012, 109, 186803.

43

Crepaldi, A.; Moreschini, L.; Autès, G.; Tournier-Colletta, C.; Moser, S.; Virk, N.; Berger, H.; Bugnon, P.; Chang, Y. J.; Kern, K. et al. Giant ambipolar Rashba effect in the semiconductor BiTeI. Phys. Rev. Lett. 2012, 109, 096803.

Nano Research
Pages 2954-2962
Cite this article:
Li X, Dai Y, Ma Y, et al. Prediction of large-gap quantum spin hall insulator and Rashba-Dresselhaus effect in two-dimensional g-TlA (A = N, P, As, and Sb) monolayer films. Nano Research, 2015, 8(9): 2954-2962. https://doi.org/10.1007/s12274-015-0800-4
Metrics & Citations  
Article History
Copyright
Return