Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article

Strain-induced spatially indirect exciton recombination in zinc-blende/wurtzite CdS heterostructures

Dehui Li1,Yang Liu1Maria de la Mata2Cesar Magen3Jordi Arbiol2,4,5Yuanping Feng6Qihua Xiong1,7()
Division of Physics and Applied PhysicsSchool of Physical and Mathematical Sciences, Nanyang Technological UniversitySingapore637371Singapore
Institut de Ciencia de Materials de BarcelonaICMAB-CSICCampus de la UAB08193Bellaterra, Catalonia, Spain
Laboratorio de Microscopías Avanzadas (LMA)Instituto de Nanociencia de Aragon (INA); ARAID and Departamento de Fisica de la Materia CondensadaUniversidad de Zaragoza50018Zaragoza, Spain
Institucio Catalana de Recerca i Estudis Avancats (ICREA)Universidad de Zaragoza08010Barcelona, Catalonia, Spain
Institut Català de Nanociència i Nanotecnologia (ICN2)Campus UAB08193Bellaterra, Catalonia, Spain
Department of PhysicsNational University of Singapore, 2 Science Drive 3Singapore117542Singapore
Division of MicroelectronicsSchool of Electrical and Electronic Engineering, Nanyang Technological UniversitySingapore639798Singapore

Present address: Department of Chemistry and Biochemistry, University of California, Los Angeles 90095, USA

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Strain engineering provides an effective mean of tuning the fundamental properties of semiconductors for electric and optoelectronic applications. Here we report on how the applied strain changes the emission properties of hetero-structures consisting of different crystalline phases in the same CdS nanobelts. The strained portion was found to produce an additional emission peak on the low-energy side that was blueshifted with increasing strain. Furthermore, the additional emission peak obeyed the Varshni equation with temperature and exhibited the band-filling effect at high excitation power. This new emission peak may be attributed to spatially indirect exciton recombination between different crystalline phases of CdS. First-principles calculations were performed based on the spatially indirect exciton recombination, and the calculated and experimental results agreed with one another. Strain proved to be capable of enhancing the anti-Stokes emission, suggesting that the efficiency of laser cooling may be improved by strain engineering.

References

1

Hui, Y. Y.; Liu, X. F.; Jie, W. J.; Chan, N. Y.; Hao, J. H.; Hsu, Y. T.; Li, L. J.; Guo, W. L.; Lau, S. P. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 2013, 7, 7126-7131.

2

Sun, L. X.; Kim, D. H.; Oh, K. H.; Agarwal, R. Strain-induced large exciton energy shifts in buckled CdS nanowires. Nano Lett. 2013, 13, 3836-3842.

3

Han, X. B.; Kou, L. Z.; Lang, X. L.; Xia, J. B.; Wang, N.; Qin, R.; Lu, J.; Xu, J.; Liao, Z. M.; Zhang, X. Z. et al. Electronic and mechanical coupling in bent ZnO nanowires. Adv. Mater. 2009, 21, 4937-4941.

4

Han, X. B.; Kou, L. Z.; Zhang, Z. H.; Zhang, Z. Y.; Zhu, X. L.; Xu, J.; Liao, Z. M.; Guo, W. L.; Yu, D. P. Strain-gradient effect on energy bands in bent ZnO microwires. Adv. Mater. 2012, 24, 4707-4711.

5

Liao, Z. M.; Wu, H. C.; Fu, Q.; Fu, X. W.; Zhu, X. L.; Xu, J.; Shvets, I. V.; Zhang, Z. H.; Guo, W. L.; Leprince-Wang, Y. M. et al. Strain induced exciton fine-structure splitting and shift in bent ZnO microwires. Sci. Rep. 2012, 2, 452.

6

Ieong, M.; Doris, B.; Kedzierski, J.; Rim, K.; Yang, M. Silicon device scaling to the sub-10-nm regime. Science 2004, 306, 2057-2060.

7

Chen, R.; Ye, Q. L.; He, T. C.; Wu, T.; Sun, H. D. Uniaxial tensile strain and exciton-phonon coupling in bent ZnO nanowires. Appl. Phys. Lett. 2011, 98, 241916.

8

Dietrich, C. P.; Lange, M.; Klüpfel, F. J.; von Wenckstern, H.; Schmidt-Grund, R.; Grundmann, M. Strain distribution in bent ZnO microwires. Appl. Phys. Lett. 2011, 98, 031105.

9

Chen, J. N.; Conache, G.; Pistol, M. E.; Gray, S. M.; Borgström, M. T.; Xu, H. X.; Xu, H. Q.; Samuelson, L.; Håkanson, U. Probing strain in bent semiconductor nanowires with Raman spectroscopy. Nano Lett. 2010, 10, 1280-1286.

10

Desai, S. B.; Seol, G.; Kang, J. S.; Fang, H.; Battaglia, C.; Kapadia, R.; Ager, J. W.; Guo, J.; Javey, A. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 2014, 14, 4592-4597.

11

Greil, J.; Lugstein, A.; Zeiner, C.; Strasser, G.; Bertagnolli, E. Tuning the electro-optical properties of germanium nanowires by tensile strain. Nano Lett. 2012, 12, 6230-6234.

12

Signorello, G.; Karg, S.; Björk, M. T.; Gotsmann, B.; Riel, H. Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain. Nano Lett. 2013, 13, 917-924.

13

Scalise, E.; Houssa, M.; Pourtois, G.; Afanas'ev, V.; Stesmans, A. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 2012, 5, 43-48.

14

Han, X. B.; Jing, G. Y.; Zhang, X. Z.; Ma, R. M.; Song, X. F.; Xu, J.; Liao, Z. M.; Wang, N.; Yu, D. P. Bending-induced conductance increase in individual semiconductor nanowires and nanobelts. Nano Res. 2009, 2, 553-557.

15

Li, W. F.; Zhang, G.; Guo, M.; Zhang, Y. W. Strain-tunable electronic and transport properties of MoS2 nanotubes. Nano Res. 2014, 7, 518-527.

16

Lin, X.; He, X. B.; Yang, T. Z.; Guo, W.; Shi, D. X.; Gao, H. J.; Ma, D. D. D.; Lee, S. T.; Liu, F.; Xie, X. C. Intrinsic current-voltage properties of nanowires with four-probe scanning tunneling microscopy: A conductance transition of ZnO nanowire. Appl. Phys. Lett. 2006, 89, 043103.

17

He, R. R.; Yang, P. D. Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 2006, 1, 42-46.

18

Nam, D.; Sukhdeo, D. S.; Kang, J. H.; Petykiewicz, J.; Lee, J. H.; Jung, W. S.; Vučković, J.; Brongersma, M. L.; Saraswat, K. C. Strain-induced pseudoheterostructure nanowires confining carriers at room temperature with nanoscale-tunable band profiles. Nano Lett. 2013, 13, 3118-3123.

19

Jain, J. R.; Hryciw, A.; Baer, T. M.; Miller, D. A. B.; Brongersma, M. L.; Howe, R. T. A micromachining-based technology for enhancing germanium light emission via tensile strain. Nat. Photon. 2012, 6, 398-405.

20

Süess, M. J.; Geiger, R.; Minamisawa, R. A.; Schiefler, G.; Frigerio, J.; Chrastina, D.; Isella, G.; Spolenak, R.; Faist, J.; Sigg, H. Analysis of enhanced light emission from highly strained germanium microbridges. Nat. Photon. 2013, 7, 466-472.

21

Li, D. H.; Zhang, J.; Xiong, Q. H. Surface depletion induced quantum confinement in CdS nanobelts. ACS Nano 2012, 6, 5283-5290.

22

Li, D. H.; Zhang, J.; Zhang, Q.; Xiong, Q. H. Electric-field-dependent photoconductivity in CdS nanowires and nanobelts: Exciton ionization, Franz-Keldysh, and Stark effects. Nano Lett. 2012, 12, 2993-2999.

23

Xu, X. L.; Zhao, Y. Y.; Sie, E. J.; Lu, Y. H.; Liu, B.; Ekahana, S. A.; Ju, X.; Jiang, Q. K.; Wang, J. B.; Sun, H. D. et al. Dynamics of bound exciton complexes in CdS nanobelts. ACS Nano 2011, 5, 3660-3669.

24

Liu, B.; Chen, R.; Xu, X. L.; Li, D. H.; Zhao, Y. Y.; Shen, Z. X.; Xiong, Q. H.; Sun, H. D. Exciton-related photoluminescence and lasing in CdS nanobelts. J. Chem. Phys. C 2011, 115, 12826-12830.

25

Zhang, J.; Li, D. H.; Chen, R. J.; Xiong, Q. H. Laser cooling of a semiconductor by 40 kelvin. Nature 2013, 493, 504-508.

26

Li, L.; Wu, P. C.; Fang, X. S.; Zhai, T. Y.; Dai, L.; Liao, M. Y.; Koide, Y.; Wang, H. Q.; Bando, Y.; Golberg, D. Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors. Adv. Mater. 2010, 22, 3161-3165.

27

Li, D. H.; Zhang, J.; Wang, X. J.; Huang, B. L.; Xiong, Q. H. Solid-state semiconductor optical cryocooler based on CdS nanobelts. Nano Lett. 2014, 14, 4724-4728.

28

Li, D. H.; Zhang, J.; Xiong, Q. H. Laser cooling of CdS nanobelts: Thickness matters. Opt. Express 2013, 21, 19302-19310.

29

Zhai, T. Y.; Fang, X. S.; Li, L.; Bando, Y.; Golberg, D. One-dimensional CdS nanostructures: Synthesis, properties, and applications. Nanoscale 2010, 2, 168-187.

30

Yeh, C. Y.; Lu, Z. W.; Froyen, S.; Zunger, A. Zinc-blende-wurtzite polytypism in semiconductors. Phys. Rev. B 1992, 46, 10086.

31

Fu, Q.; Zhang, Z. Y.; Kou, L. Z.; Wu, P. C.; Han, X. B.; Zhu, X. L.; Gao, J. Y.; Xu, J.; Zhao, Q.; Guo, W. L. et al. Linear strain-gradient effect on the energy bandgap in bent CdS nanowires. Nano Res. 2011, 4, 308-314.

32

de la Mata, M.; Magen, C.; Gazquez, J.; Utama, M. I. B.; Heiss, M.; Lopatin, S.; Furtmayr, F.; Fernández-Rojas, C. J.; Peng, B.; Morante, J. R. et al. Polarity assignment in ZnTe, GaAs, ZnO, and GaN-AlN nanowires from direct dumbbell analysis. Nano Lett. 2012, 12, 2579-2586.

33

Algra, R. E.; Verheijen, M. A.; Borgström, M. T.; Feiner, L. F.; Immink, G.; van Enckevort, W. J. P.; Vlieg, E.; Bakkers, E. P. A. M. Twinning superlattices in indium phosphide nanowires. Nature 2008, 456, 369-372.

34

Xiong, Q. H.; Wang, J.; Eklund, P. C. Coherent twinning phenomena: Towards twinning superlattices in Ⅲ-Ⅴ semiconducting nanowires. Nano Lett. 2006, 6, 2736-2742.

35

Chen, R.; Li, D. H.; Liu, B.; Peng, Z. P.; Gurzadyan, G. G.; Xiong, Q. H.; Sun, H. D. Optical and excitonic properties of crystalline ZnS nanowires: Toward efficient ultraviolet emission at room temperature. Nano Lett. 2010, 10, 4956-4961.

36

Muñoz, M.; Pollak, F. H.; Kahn, M.; Ritter, D.; Kronik, L.; Cohen, G. M. Burstein-Moss shift of n-doped In0.53Ga0.47As/InP. Phys. Rev. B 2001, 63, 233302.

37

Liu, X. F.; Zhang, Q.; Yip, J. N.; Xiong, Q. H.; Sum, T. C. Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced Burstein-Moss effect. Nano Lett. 2013, 13, 5336-5343.

38

Jacobs, B. W.; Ayres, V. M.; Petkov, M. P.; Halpern, J. B.; He, M. Q.; Baczewski, A. D.; McElroy, K.; Crimp, M. A.; Zhang, J. M.; Shaw, H. C. Electronic and structural characteristics of zinc-blende wurtzite biphasic homostructure GaN nanowires. Nano Lett. 2007, 7, 1435-1438.

39

Ikejiri, K.; Kitauchi, Y.; Tomioka, K.; Motohisa, J.; Fukui, T. Zinc blende and wurtzite crystal phase mixing and transition in indium phosphide nanowires. Nano Lett. 2011, 11, 4314-4318.

40

Pemasiri, K.; Montazeri, M.; Gass, R.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C. et al. Carrier dynamics and quantum confinement in type Ⅱ ZB-WZ InP nanowire homostructures. Nano Lett. 2009, 9, 648-654.

41

Heiss, M.; Conesa-Boj, S.; Ren, J.; Tseng, H. H.; Gali, A.; Rudolph, A.; Uccelli, E.; Peiró, F.; Morante, J. R.; Schuh, D. et al. Direct correlation of crystal structure and optical properties in wurtzite/zinc-blende GaAs nanowire heterostructures. Phys. Rev. B 2011, 83, 045303.

42

Spirkoska, D.; Arbiol, J.; Gustafsson, A.; Conesa-Boj, S.; Glas, F.; Zardo, I.; Heigoldt, M.; Gass, M.; Bleloch, A. L.; Estrade, S. et al. Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures. Phys. Rev. B 2009, 80, 245325.

43

Akopian, N.; Patriarche, G.; Liu, L.; Harmand, J. C.; Zwiller, V. Crystal phase quantum dots. Nano Lett. 2010, 10, 1198-1201.

44

Arbiol, J.; Fontcuberta i Morral, A.; Estradé, S.; Peiró, F.; Kalache, B.; Roca i Cabarrocas, P.; Morante, J. R. Influence of the (111) twinning on the formation of diamond cubic/diamond hexagonal heterostructures in Cu-catalyzed Si nanowires. J. Appl. Phys. 2008, 104, 064312.

45

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.

46

Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106.

47

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

48

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251.

49

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.

50

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758.

51

Peressi, M.; Binggeli, N.; Baldereschi, A. Band engineering at interfaces: Theory and numerical experiments. J. Phys. D. -Appl. Phys. 1998, 31, 1273.

52

Murayama, M.; Nakayama, T. Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. Phys. Rev. B 1994, 49, 4710.

53

Yakimov, A. I.; Stepina, N. P.; Dvurechenskii, A. V.; Nikiforov, A. I.; Nenashev, A. V. Interband absorption in charged Ge/Si type-Ⅱ quantum dots. Phys. Rev. B 2001, 63, 045312.

Nano Research
Pages 3035-3044
Cite this article:
Li D, Liu Y, Mata Mdl, et al. Strain-induced spatially indirect exciton recombination in zinc-blende/wurtzite CdS heterostructures. Nano Research, 2015, 8(9): 3035-3044. https://doi.org/10.1007/s12274-015-0809-8
Metrics & Citations  
Article History
Copyright
Return