AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Cylindrical spiral triboelectric nanogenerator

Xiao Hui Li1,§Chang Bao Han1,§Li Min Zhang1Zhong Lin Wang1,2( )
Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083China
School of Material Science and EngineeringGeorgia Institute of TechnologyAtlantaGeorgia30332USA

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

In recent years, triboelectric nanogenerators have attracted much attention because of their unique potential in self-powered nanosensors and nanosystems. In this paper, we report a cylindrical spiral triboelectric nanogenerator (S-TENG), which not only can produce high electric output to power display devices, but also can be used as a self-powered displacement sensor integrated on a measurement ruler. At a sliding speed of 2.5 m/s, S-TENG can generate a short-circuit current (ISC) of 30 μA and an open-circuit voltage (VOC) of 40 V. As the power source, we fabricate a transparent and flexible hand-driven S-TENG. Furthermore, we demonstrate a self-powered S-TENG-based measuring tapeline that can accurately measure and display the pulled-out distance without the need for an extra battery. The results obtained indicate that TENG-based devices have good potential for application in self-powered measurement systems.

Electronic Supplementary Material

Video
nr-8-10-3197_ESM_Video S1.mov
Download File(s)
nr-8-10-3197_ESM.pdf (445.4 KB)

References

1

Patolsky, F.; Timko, B. P.; Yu, G. H.; Fang, Y.; Greytak, A. B.; Zheng, G. F.; Lieber, C. M. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 2006, 313, 1100–1104.

2

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

3

Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 2002, 295, 2425–2427.

4

Xu, S.; Hansen, B. J.; Wang, Z. L. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat. Commun. 2010, 1, 93.

5

Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

6

Wang, Z. L. Self-powered nanosensors and nanosystems. Adv. Mater. 2012, 24, 280–285.

7

Sebald, G.; Lefeuvre, E.; Guyomar, D. Pyroelectric energy conversion: Optimization principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2008, 55, 538–551.

8

Yang, Y.; Jung, J. H.; Yun, B. K.; Zhang, F.; Pradel, K. C.; Guo, W. X.; Wang, Z. L. Flexible pyroelectric nanogenerators using a composite structure of lead-free KNbO3 nanowires. Adv. Mater. 2012, 24, 5357–5362.

9

Yang, Y.; Guo, W. X.; Pradel, K. C.; Zhu, G.; Zhou, Y. S.; Zhang, Y.; Hu, Y. F.; Lin, L.; Wang, Z. L. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 2012, 12, 2833–2838.

10

Beeby, S. P.; Torah, R. N.; Tudor, M. J.; Glynne-Jones, P.; O'Donnell, T.; Saha, C. R.; Roy, S. A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 2007, 17, 1257–1265.

11

Park, J. C.; Park, J. Y. A bulk micromachined electromagnetic micro-power generator for an ambient vibration-energy-harvesting system. J. Korean Phys. Soc. 2011, 58, 1468–1473.

12

Tang, W.; Meng, B.; Zhang, H. X. Investigation of power generation based on stacked triboelectric nanogenerator. Nano Energy 2013, 2, 1164–1171.

13

Han, C. B.; Du, W. M.; Zhang, C.; Tang, W.; Zhang, L. M.; Wang, Z. L. Harvesting energy from automobile brake in contact and non-contact mode by conjunction of triboelectrication and electrostatic-induction processes. Nano Energy 2014, 6, 59–65.

14

Xie, Y. N.; Wang, S. H.; Niu, S. M.; Lin, L.; Jing, Q. S.; Su, Y. J.; Wu, Z. Y.; Wang, Z. L. Multi-layered disk triboelectric nanogenerator for harvesting hydropower. Nano Energy 2014, 6, 129–136.

15

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

16

Yi, F.; Lin, L.; Niu, S. M.; Yang, J.; Wu, W. Z.; Wang, S. H.; Liao, Q. L.; Zhang, Y.; Wang, Z. L. Self-powered trajectory, velocity, and acceleration tracking of a moving object/body using a triboelectric sensor. Adv. Funct. Mater. 2014, 24, 7488–7494.

17

Su, Y. J.; Zhu, G.; Yang, W. Q.; Yang, J.; Chen, J.; Jing, Q. S.; Wu, Z. M.; Jiang, Y. D.; Wang, Z. L. Triboelectric sensor for self-powered tracking of object motion inside tubing. ACS Nano 2014, 8, 3843–3850.

18

Du, W.; Han, X.; Lin, L.; Chen, M.; Li, X.; Pan, C.; Wang, Z. L. A three dimensional multi-layered sliding triboelectric nanogenerator. Adv. Energy Mater. 2014, 4, 1301592.

19

Zhong, J. W.; Zhang, Y.; Zhong, Q. Z.; Hu, Q. Y.; Hu, B.; Wang, Z. L.; Zhou, J. Fiber-based generator for wearable electronics and mobile medication. ACS Nano 2014, 8, 6273–6280.

20

Jing, Q. S.; Zhu, G.; Wu, W. Z.; Bai, P.; Xie, Y. N.; Han, R. P. S.; Wang, Z. L. Self-powered triboelectric velocity sensor for dual-mode sensing of rectified linear and rotary motions. Nano Energy 2014, 10, 305–312.

21

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

22

Wang, S. H.; Lin, L.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 2013, 13, 2226–2233.

23

Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energ. Environ. Sci. 2013, 6, 3576–3583.

Nano Research
Pages 3197-3204
Cite this article:
Li XH, Han CB, Zhang LM, et al. Cylindrical spiral triboelectric nanogenerator. Nano Research, 2015, 8(10): 3197-3204. https://doi.org/10.1007/s12274-015-0819-6

492

Views

22

Crossref

N/A

Web of Science

26

Scopus

3

CSCD

Altmetrics

Received: 12 March 2015
Revised: 14 May 2015
Accepted: 18 May 2015
Published: 20 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return