Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Rapid developments in both fundamental science and modern technology that target water-related problems, including the physical nature of our planet and environment, the origin of life, energy production via water splitting, and water purification, all call for a molecular-level understanding of water. This invokes relentless efforts to further our understanding of the basic science of water. Current challenges to achieve a molecular picture of the peculiar properties and behavior of water are discussed herein, with a particular focus on the structure and dynamics of bulk and surface water, the molecular mechanisms of water wetting and splitting, application-oriented research on water decontamination and desalination, and the development of complementary techniques for probing water at the nanoscale.
Raviv, U.; Laurat, P.; Klein, J. Fluidity of water confined to subnanometer films. Nature 2001, 413, 51–54.
Wernet, P.; Nordlund, D.; Bergmann, U.; Cavalleri, M.; Odelius, M.; Ogasawara, H.; Näslund, L. Å.; Hirsch, T. K.; Ojamäe, L.; Glatzel, P. et al. The structure of the first coordination shell in liquid water. Science 2004, 304, 995–999.
Smith, J. D.; Cappa, C. D.; Wilson, K. R.; Messer, B. M.; Cohen, R. C.; Saykally, R. J. Energetics of hydrogen bond network rearrangements in liquid water. Science 2004, 306, 851–853.
Head-Gordon, T.; Johnson, M. E. Tetrahedral structure or chains for liquid water. Proc. Natl. Acad. Sci. USA 2006, 103, 7973–7977.
Doering, D. L.; Madey, T. E. The adsorption of water on clean and oxygen-dosed Ru(011). Surf. Sci. 1982, 123, 305–337.
Held, G.; Menzel, D. The structure of the p(√3×√3)R30° bilayer of D2O on Ru(001). Surf. Sci. 1994, 316, 92–102.
Feibelman, P. J. Partial dissociation of water on Ru(0001). Science 2002, 295, 99–102.
Cerdá, J.; Michaelides, A.; Bocquet, M. -L.; Feibelman, P. J.; Mitsui, T.; Rose, M.; Fomin, E.; Salmeron, M. Novel water overlayer growth on Pd(111) characterized with scanning tunneling microscopy and density functional theory. Phys. Rev. Lett. 2004, 93, 116101.
Carrasco, J.; Michaelides, A.; Forster, M.; Haq, S.; Raval, R.; Hodgson, A. A one-dimensional ice structure built from pentagons. Nat. Mater. 2009, 8, 427–431.
Nie, S.; Feibelman, P. J.; Bartelt, N. C.; Thürmer, K. Pentagons and heptagons in the first water layer on Pt(111). Phys. Rev. Lett. 2010, 105, 026102.
Carrasco, J.; Hodgson, A.; Michaelides, A. A molecular perspective of water at metal interfaces. Nat. Mater. 2012, 11, 667–674.
Lin, K.; Zhou, X. -G.; Liu, S. L.; Luo, Y. Identification of free OH and its implication on structural changes of liquid water. Chin. J. Chem. Phys. 2013, 26, 121.
Mishima, O. Relationship between melting and amorphization of ice. Nature 1996, 384, 546–549.
Loerting, T.; Salzmann, C.; Kohl, I.; Mayer, E.; Hallbrucker, A. A second distinct structural "state" of high-density amorphous ice at 77 K and 1 bar. Phys. Chem. Chem. Phys. 2001, 3, 5355–5357.
Denbenedetti, P. G.; Stanley, H. E. Supercooled and glassy water. Phys. Today 2003, 56, 40–46.
Xu, L. M.; Kumar, P.; Buldyrev, S. V.; Chen, S. H.; Poole, P. H.; Sciortino, F.; Stanley, H. E. Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid phase transition. Proc. Natl. Acad. Sci. USA 2005, 102, 16558–16562.
Hoffmann, M. M.; Conradi, M. S. Are there hydrogen bonds in supercritical water? J. Am. Chem. Soc. 1997, 119, 3811–3817.
Sahle, C. J.; Sternemann, C.; Schmidt, C.; Lehtola, S.; Jahn, S.; Simonelli, L.; Huotari, S.; Hakala, M.; Pylkkänen, T.; Nyrow, A. et al. Microscopic structure of water at elevated pressures and temperatures. Proc. Natl. Acad. Sci. USA 2013, 110, 6301–6306.
Tretyakov, M. Y.; Serov, E. A.; Koshelev, M. A.; Parshin, V. V.; Krupnov, A. F. Water dimer rotationally resolved millimeter-wave spectrum observation at room temperature. Phys. Rev. Lett. 2013, 110, 093001.
Cho, C. H.; Singh, S.; Robinson, G. W. Understanding all of water's anomalies with a nonlocal potential. J. Chem. Phys. 1997, 107, 7979–7988.
Tanaka, H. Simple physical explanation of the unusual thermodynamic behavior of liquid water. Phys. Rev. Lett. 1998, 80, 5750–5753.
Vedamuthu, M.; Singh, S.; Robinson, G. W. Properties of liquid water: Origin of the density anomalies. J. Phys. Chem. 1994, 98, 2222–2230.
Vedamuthu, M.; Singh, S.; Robinson, G. W. Accurate mixture- model densities for D2O. J. Phys. Chem. 1994, 98, 8591–8593.
Dougherty, R. C.; Howard, L. N. Equilibrium structural model of liquid water: Evidence from heat capacity, spectra, density, and other properties. J. Chem. Phys. 1998, 109, 7379–7393.
Alphonse, N. K.; Dillon, S. R.; Dougherty, R. C.; Galligan, D. K.; Howard, L. N. Direct Raman evidence for a weak continuous phase transition in liquid water. J. Phys. Chem. A 2006, 110, 7577–7580.
Franzese, G.; Stanley, H. E. The Widom line of supercooled water. J. Phys. -Condens. Matter 2007, 19, 205126.
Kumar, P.; Franzese, G.; Stanley, H. E. Dynamics and thermodynamics of water. J. Phys. -Condens. Matter 2008, 20, 244114.
Angell, C. A.; Bressel, R. D.; Hemmati, M.; Sare, E. J.; Tucker, J. C. Water and its anomalies in perspective: Tetrahedral liquids with and without liquid-liquid phase transitions. Phys. Chem. Chem. Phys. 2000, 2, 1559–1566.
Kumar, P.; Stanley, H. E. Thermal conductivity minimum: A new water anomaly. J. Phys. Chem. B 2011, 115, 14269–14273.
Murphy, D. M.; Koop, T. Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q. J. R. Meteorol. Soc. 2005, 131, 1539–1565.
Mpemba, E. B.; Osborne, D. G. Cool? Phys. Educ. 1969, 4, 172–175.
Shell, M. S.; Debenedetti, P. G.; Panagiotopoulos, A. Z. Molecular structural order and anomalies in liquid silica. Phys. Rev. E 2002, 66, 011202.
Hujo, W.; Jabes, B. S.; Rana, V. K.; Chakravarty, C.; Molinero, V. The rise and fall of anomalies in tetrahedral liquids. J. Stat. Phys. 2011, 145, 293–312.
Jabes, B. S.; Nayar, D.; Dhabal, D.; Molinero, V.; Chakrabarty, C. Water and other tetrahedral liquids: Order, anomalies and solvation. J. Phys. -Condens. Matter 2012, 24, 284116.
Marx, D.; Tuckerman, M. E.; Hutter, J.; Parrinello, M. The nature of hydrated excess proton in water. Nature 1999, 397, 601–604.
Ranea, V. A.; Michaelides, A.; Ramírez, R.; de Andres, P. L.; Vergés, J. A.; King, D. A. Water dimer diffusion on Pd{111} assisted by an H-bond donor-acceptor tunneling exchange. Phys. Rev. Lett. 2004, 92, 136104.
Tuckerman, M. E.; Marx, D.; Parrinello, M. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 2002, 417, 925–929.
Li, X. -Z.; Walker, B.; Michaelides, A. Quantum nature of the hydrogen bond. Proc. Natl. Acad. Sci. USA 2011, 108, 6369–6373.
Chen, J.; Li, X. Z.; Zhang, Q. F.; Michaelides, A.; Wang, E. G. Nature of proton transport in a water-filled carbon nanotube and in liquid water. Phys. Chem. Chem. Phys. 2013, 15, 6344–6349.
Li, X. Z.; Probert, M. I. J.; Alavi, A.; Michaelides, A. Quantum nature of the proton in water-hydroxyl overlayers on metal surfaces. Phys. Rev. Lett. 2010, 104, 066102.
Paesani, F.; Voth, G. A. The properties of water: Insights from quantum simulations. J. Phys. Chem. B 2009, 113, 5702–5719.
Thiel, P. A.; Madey, T. E. The interaction of water with solid surfaces: Fundamental aspects. Surf. Sci. Rep. 1987, 7, 211–385.
Henderson, M. A. The interaction of water with solid surfaces: Fundamental aspects. Surf. Sci. Rep. 2002, 46, 1–308.
Hodgson, A.; Haq, S. Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 2009, 64, 381–451.
Kasemo, B. Biological surface science. Curr. Opin. Solid State Mater. Sci. 1998, 3, 451–459.
Odelius, M.; Bernasconi, M.; Parrinello, M. Two dimensional ice adsorbed on mica surface. Phys. Rev. Lett. 1997, 78, 2855–2858.
Meng, S.; Zhang, Z. Y.; Kaxiras, E. Tuning solid surfaces from hydrophobic to superhydrophilic by submonolayer surface modification. Phys. Rev. Lett. 2006, 97, 036107.
Cheh, J.; Gao, Y.; Wang, C. L.; Zhao, H.; Fang, H. P. Ice or water: Thermal properties of monolayer water adsorbed on a substrate. J. Stat. Mech. 2013, 2013, P06009.
Feibelman, P. J. DFT versus the "real world" (or, waiting for Godft). Top. Catal. 2010, 53, 417–422.
Meng, S.; Wang, E. G.; Gao, S. W. A molecular picture of hydrophilic and hydrophobic interactions from ab initio density functional theory calculations. J. Chem. Phys. 2003, 119, 7617–7620.
Smith, R. S.; Huang, C.; Wong, E. K. L.; Kay, B. D. Desorption and crystallization kinetics in nanoscale thin films of amorphous water ice. Surf. Sci. 1996, 367, L13–L18.
Wang, C. L.; Lu, H. J.; Wang, Z. G.; Xiu, P.; Zhou, B.; Zuo, G. H.; Wan, R. Z.; Hu, J.; Fang, H. P. Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates. Phys. Rev. Lett. 2009, 103, 137801.
Zhu, C. Q.; Li, H.; Huang, Y. F.; Zeng, X. C.; Meng, S. Microscopic insight into surface wetting: Relations between interfacial water structure and the underlying lattice constant. Phys. Rev. Lett. 2013, 110, 126101.
Choi, C. L.; Feng, J.; Li, Y. G.; Wu, J.; Zak, A.; Tenne, R.; Dai, H. J. WS2 nanoflakes from nanotubes for electrocatalysis. Nano Res. 2013, 6, 921–928.
Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.
Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.
Wang, M.; Ren, F.; Cai, G. X.; Liu, Y. C.; Shen, S. H.; Guo, L. J. Activating ZnO nanorod photoanodes in visible light by Cu ion implantation. Nano Res. 2014, 7, 353–364.
Song, S. M.; Wang, W. Z.; Jiang, D.; Zhang, L.; Li, X. M.; Zheng, Y. L.; An, Q. Bi2WO6 quantum dot-intercalated ultrathin montmorillonite nanostructure and its enhanced photocatalytic performance. Nano Res. 2014, 7, 1497–1506.
Ling, X. Y.; Yan, R. X.; Lo, S.; Hoang, D. T.; Liu, C.; Fardy, M. A.; Khan, S. B.; Asiri, A. M.; Bawaked, S. M.; Yang, P. D. Alumina-coated Ag nanocrystal monolayers as surfaceenhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Res. 2014, 7, 132–143.
Yagi, M.; Kaneko, M. Molecular catalysts for water oxidation. Chem. Rev. 2001, 101, 21–35.
Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.
Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.
Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2013, 42, 2294–2320.
Guo, Q.; Xu, C. B.; Ren, Z. F.; Yang, W. S.; Ma, Z. B.; Dai, D. X.; Fan, H. J.; Minton, T. K.; Yang, X. M. Stepwise photocatalytic dissociation of methanol and water on a TiO2(110) surface. J. Am. Chem. Soc. 2012, 134, 13366–13373.
Chiashi, S.; Hanashima, T.; Mitobe, R.; Nagatsu, K.; Yamamoto, T.; Homma, Y. Water encapsulation control in individual single-walled carbon nanotubes by laser irradiation. J. Phys. Chem. Lett. 2014, 5, 408–412.
Soper, A. K.; Bruni, F.; Ricci, M. A. Water confined in Vycor glass. Ⅱ. Excluded volume effects on the radial distribution functions. J. Phys. Chem. 1998, 109, 1486–1494.
Weik, M. Low-temperature behavior of water confined by biological macromolecules and its relation to protein dynamics. Eur. Phys. J. E-Soft Matter Biol. Phys. 2003, 12, 153–158.
Koga, K.; Gao, G. T.; Tanka, H.; Zeng, X. C. Formation of ordered ice nanotubes inside carbon nanotubes. Nature 2001, 412, 802–805.
Kolesnikov, A. I.; Zanotti, J. -M.; Loong, C. -K.; Thiyaigarajan, P.; Moravsky, A. P.; Loutfy, R. O.; Burnham, C. J. Anomalously soft dynamics of water in a nanotube: A revelation of nanoscale confinement. Phys. Rev. Lett. 2004, 93, 035503.
Bergman, R.; Swenson, J. Dynamics of supercooled water in confined geometry. Nature 2000, 403, 283–286.
Su, X. C.; Lianos, L.; Shen, Y. R.; Somorjai, G. A. Surface-induced ferroelectric ice on Pt(111). Phys. Rev. Lett. 1998, 80, 1533.
Meng, S.; Chakarov, D. V.; Kasemo, B.; Gao, S. W. Two dimensional hydration shells of alkali metal ions at a hydrophobic surface. J. Chem. Phys. 2004, 121, 12572.
Meng, S.; Gao, S. W. Formation and interaction of hydrated alkali metal ions at the graphite-water interface. J. Chem. Phys. 2006, 125, 014708.
Matsui, H.; Tadokoro, M. Eigen-like hydrated protons traveling with a local distortion through the water nanotube in new molecular porous crystals {[MⅢ(H2bim)3](TMA)·20H2O}n (M = Co, Rh, Ru). J. Chem. Phys. 2012, 137, 144503.
Zhao, Y.; Li, H.; Zeng, X. C. First-principles molecular dynamics simulation of atmospherically relevant anion solvation in supercooled water droplet. J. Am. Chem. Soc. 2013, 135, 15549–15558.
Loris, R.; Langhorst, U.; De Vos, S.; Decanniere, K.; Bouckaert, J.; Maes, D.; Transue, T. R.; Steyaert, J. Conserved water molecules in a large family of microbial ribonucleases. Proteins-Struct., Funct., Bioinf. 1999, 36, 117–134.
Murata, K.; Mitsuoka, K.; Hirai, T.; Walz, T.; Agre, P.; Heymann, J. B.; Engel, A.; Fujiyoshi, Y. Structural determinants of water permeation through aquaporin-1. Nature 2000, 407, 599–605.
Pal, S. K.; Peon, J.; Zewail, A. H. Biological water at the protein surface: Dynamical solvation probed directly with femtosecond resolution. Proc. Natl. Acad. Sci. USA 2002, 99, 1763–1768.
Zhong, D. P.; Pal, S. K.; Zewail, A. H. Biological water: A critique. Chem. Phys. Lett. 2011, 503, 1–11.
Kropman, M. F.; Bakker, H. J. Dynamics of water molecules in aqueous solvation shells. Science 2001, 291, 2118–2120.
Das, D.; Samanta, G.; Mandal, B. K.; Chowdhury, T. R.; Chanda, C. R.; Chowdhury, P. P.; Basu, G. K.; Chakraborti, D. Arsenic in groundwater in six districts of West Bengal, India. Environ. Geochem. Health 1996, 18, 5–15.
Bhattacharya, P.; Mukherjee, A.; Mukherjee, A. B. Arsenic in groundwater of India. Enc. Environ. Health 2011, 150–164.
Devi, N. L.; Chandra, Y. I.; Qi, S. Recent status of arsenic contamination in groundwater of northeastern India - A review. Rep. Op. 2009, 1, 22–32.
Pal, T.; Mukherjee, P. K.; Sengupta, S.; Bhattacharyya, A. K.; Shome, S. Arsenic pollution in groundwater of West Bengal, India - An insight into the problem by subsurface sediment analysis. Gondwana Res. 2002, 5, 501–512.
Rodriguez-Lado, L.; Sun, G. F.; Berg, M.; Zhang, Q.; Xue, H. B.; Zheng, Q. M.; Johnson, C. A. Groundwater arsenic contamination throughout China. Science 2013, 341, 866–868.
Michael, H. A. An arsenic forcast for China. Science 2013, 341, 852–853.
Yu, G. Q.; Sun, D. J.; Zheng, Y. Health effects of exposure to natural arsenic in groundwater and coal in China: An overview of occurrence. Environ. Health Perspect. 2007, 115, 636–642.
Frost, F.; Franke, D.; Pierson, K.; Woodruff, L.; Raasina, B.; Davis, R.; Davies, J. A seasonal study of arsenic in groundwater, Snohomish County, Washington, USA. Environ. Geochem. Health 1993, 15, 209–214.
Hudak, P. F. Distribution of arsenic concentrations in groundwater of the Seymour Aquifer, Texas, USA. Int. J. Environ. Health Res. 2008, 18, 79–82.
Barringer, J. L.; Reilly, P. A.; Eberl, D. D.; Blum, A. E.; Bonin, J. L.; Rosman, R.; Hirst, B.; Alebus, M.; Cenno, K.; Gorska, M. Arsenic in sediments, groundwater, and streamwater of a glauconitic Coastal Plain terrain, New Jersey, USA - Chemical "fingerprints" for geogenic and anthropogenic sources. Appl. Geochem. 2011, 26, 763–776.
Ghanem, M.; Samhan, S.; Carlier, E.; Ali, W. Groundwater pollution due to pesticides and heavy metals in north West Bank. J. Environ. Prot. 2011, 2, 429–434.
Dsikowitzky, L.; Nordhaus, I.; Jennerjahn, T. C.; Khrycheva, P.; Sivatharshan, Y.; Yuwono, E.; Schwarzbauer, J. Anthropogenic organic contaminants in water, sediments and benthic organisms of the mangrove-fringed Segara Anakan Lagoon, Java, Indonesia. Mar. Pollut. Bull. 2011, 62, 851–862.
Thompson, B.; Adelsbach, T.; Brown, C.; Hunt, J.; Kuwabara, J.; Neale, J.; Ohlendorf, H.; Schwarzbach, S.; Spies, R.; Taberski, K. Biological effects of anthropogenic contaminants in the San Francisco Estuary. Environ. Res. 2007, 105, 156–174.
Feng, L. H.; Zhang, X. C.; Luo, G. Y. Research on the risk of water shortages and the carrying capacity of water resources in Yiwu, China. Hum. Ecol. Risk Assess. 2009, 15, 714–726.
Pomeranz, K. The great Himalayan watershed: Water shortages, mega-projects and environmental politics in China, India, and Southeast Asia. Asia Pac. J. 2009, 30-2-09.
Li, Y. -S.; Raso, G.; Zhao, Z. -Y.; He, Y. -K.; Ellis, M. K.; McManus, D. P. Large water management projects and schistosomiasis control, Dongting Lake Region, China. Emerg. Infect. Dis. 2007, 13, 973–979.
Cerci, Y. Exergy analysis of a reverse osmosis desalination plant in California. Desalination 2002, 142, 257–266.
Caron, D. A.; Garneau, M. -E.; Seubert, E.; Howard, M. D. A.; Darjany, L.; Schnetzer, A.; Cetinić, I.; Filteau, G.; Lauri, P.; Jones, B. et al. Harmful algae and their potential impacts on desalination operations off southern California. Water Res. 2010, 44, 385–416.
Lattemann, S.; Höpner, T. Environmental impact and impact assessment of seawater desalination. Desalination 2008, 220, 1–15.
Hutton, G. Global Costs and Benefits of Drinking-Water Supply and Sanitation Interventions to Reach the MDG Target and Universal Coverage; World Health Organization: Geneva, Switzerland, 2012.
Gross, B.; van Wijk, C.; Mukherjee, N. Linking Sustainability with Demand, Gender and Poverty; Water and Sanitation Program, The World Bank, IRC International Water and Sanitation Centre: Delft, The Netherlands, 2000.
Daughton, C. G. Non-regulated water contaminants: Emerging research. Environ. Impact Assess. Rev. 2004, 24, 711–732.
Richardson, S. D. Disinfection by-products and other emerging contaminants in drinking water. TrAC Trends Anal. Chem. 2003, 22, 666–684.
Richardson, S. D.; Ternes, T. A. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2011, 83, 4614–4648.
Barrett, J. R. Chemical contaminants in drinking water: Where do we go from here? Environ. Health Perspect. 2014, 122, A80.
Richardson, S. D. New disinfection by-product issues: Emerging DBPs and alternative routes of exposure. Global NEST J. 2005, 7, 43–60.
Boorman, G. A.; Dellarco, V.; Dunnick, J. K.; Chapin, R. E.; Hunter, S.; Hauchman, F.; Gardner, H.; Cox, M.; Sills, R. C. Drinking water disinfection byproducts: Review and approach to toxicity evaluation. Environ. Health Perspect. 1999, 107, 207–217.
Krasner, S. W.; Weinberg, H. S.; Richardson, S. D.; Pastor, S. J.; Chinn, R.; Sclimenti, M. J.; Onstad, G. D.; Thruston, A. D. Occurrence of a new generation of disinfection byproducts. Environ. Sci. Technol. 2006, 40, 7175–7185.
Iriarte, U.; Álvarez-Uriarte, J. I.; López-Fonseca, R.; González-Velasco, J. R. Trihalomethane formation in ozonated and chlorinated surface water. Environ. Chem. Lett. 2003, 1, 57–61.
Rigobello, E. S.; Dantas, A. D. B.; Bernardo, L. D.; Vieira, E. M. Removal of diclofenac by conventional drinking water treatment processes and granular activated carbon filtration. Chemosphere 2013, 92, 184–191.
Adams, C.; Wang, Y.; Loftin, K.; Meyer, M. Removal of antibiotics from surface and distilled water in conventional water treatment processes. J. Environ. Eng. 2002, 128, 253–260.
Binnie, C.; Kimber, M.; Smethurst, G. Basic Water Treatmentm, 3rd ed.; Thomas Telford Publishing, Thomas Telford, Ltd: London, 2002.
Guzzella, L.; Feretti, D.; Monarca, S. Advanced oxidation and adsorption technologies for organic micropollutant removal from lake water used as drinking-water supply. Water Res. 2002, 36, 4307–4318.
Fritzmann, C.; Löwenberg, J.; Wintgens, T.; Melin, T. State-of-the-art of reverse osmosis desalination. Desalination 2007, 216, 1–76.
Elimelech, M.; Phillip, W. A. The future of seawater desalination: Energy, technology and the environment. Science 2011, 333, 712–717.
Xu, J.; Ruan, G. L.; Chu, X. Z.; Yao, Y.; Su, B. W.; Gao, C. J. A pilot study of UF pretreatment without any chemicals for SWRO desalination in China. Desalination 2007, 207, 216–226.
Yip, N. Y.; Tiraferri, A.; Phillip, W. A.; Schiffrnan, J. D.; Hoover, L. A.; Kim, Y. C.; Elimelech, M. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Environ. Sci. Technol. 2011, 45, 4360–4369.
Gupta, V. K.; Ali, I. Water treatment by membrane filtration techniques. In Environmental Water: Advances in Treatment, Remediation and Recycling; Gupta, V. K.; Ali, I., Eds.; Elsevier B.V. : Amsterdam, The Netherlands, 2013; pp 135–154.
Kumar, P.; Sharma, N.; Ranjan, R.; Kumar, S.; Bhat, Z. F.; Jeong, D. K. Perspective of membrane technology in dairy industry: A review. Asian-Australas. J. Anim. Sci. 2013, 26, 1347–1358.
Rao, A. P.; Desai, N. V.; Rangarajan, R. Interfacially synthesized thin film composite RO membranes for seawater desalination. J. Membr. Sci. 1997, 124, 263–272.
Paul, D. R. The role of membrane pressure in reverse osmosis. J. App. Polym. Sci. 1972, 16, 771–782.
Paul, D. R. Reformulation of the solution-diffusion theory of reverse osmosis. J. Membr. Sci. 2004, 241, 371–386.
Gerard, R.; Hachisuka, H.; Hirose, M. New membrane developments expanding the horizon for the application of reverse osmosis technology. Desalination 1998, 119, 47–55.
Sidney, L.; Srinivasa, S. Seawater dimineralization by means of an osmotic membrane. In Saline Water Conversion-Ⅱ; Gould, R. F., Ed.; American Chemical Society: Washington, D. C., 1963; pp 117–132.
McCutcheon, J. R.; Elimelech, M. Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes. J. Membr. Sci. 2008, 318, 458–466.
Tang, Z. H.; Qiu, C. Q.; McCutcheon, J. R.; Yoon, K.; Ma, H. Y.; Fang, D. F.; Lee, E.; Kopp, C.; Hsiao, B. S.; Chu, B. Design and fabrication of electrospun polyethersulfone nanofibrous scaffold for high-flux nanofiltration membranes. J. Polym. Sci., Part B-Polym. Phys. 2009, 47, 2288–2300.
Arena, J. T.; McCloskey, B.; Freeman, B. D.; McCutcheon, J. R. Surface modification of thin film composite membrane support layers with polydopamine: Enabling use of reverse osmosis membranes in pressure retarded osmosis. J. Membr. Sci. 2011, 375, 55–62.
Bui, N. -N.; Lind, M. L.; Hoek, E. M. V.; McCutcheon, J. R. Electrospun nanofiber supported thin film composite membranes for engineered osmosis. J. Membr. Sci. 2011, 385–386, 10–19.
Loeb, S. The Loeb-Sourirajan membrane: How it came about. In ACS Symposium Series - Synthetic Membranes: Desalination; Turbak, A. F., Ed.; American Chemical Society: Washington, D. C., 1981; pp 1–9.
Lien, H. -L.; Wilkin, R. T. High-level arsenite removal from groundwater by zero-valent iron. Chemosphere 2005, 59, 377–386.
He, F.; Zhao, D. Y.; Paul, C. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res. 2010, 44, 2360–2370.
Henn, K. W.; Waddill, D. W. Utilization of nanoscale zero-valent iron for source remediation–A case study. Remediation 2006, 57–77.
Dubey, S. P.; Dwivedi, A. D.; Kim, I. -C.; Sillanpaa, M.; Kwon, Y. -N.; Lee, C. Synthesis of graphene–carbon sphere hybrid aerogel with silver nanoparticles and its catalytic and adsorption applications. Chem. Eng. J. 2014, 244, 160–167.
He, J. S.; Siah, T. -S.; Chen, J. P. Performance of an optimized Zr-based nanoparticle-embedded PSF blend hollow fiber membrane in treatment of fluoride contaminated water. Water Res. 2014, 56, 88–97.
Xiong, R.; Wang, Y. R.; Zhang, X. X.; Lu, C. H. Facile synthesis of magnetic nanocomposites of cellulose@ultrasmall iron oxide nanoparticles for water treatment. RSC Adv. 2014, 4, 22632–22641.
Saharan, P.; Chaudhary, G. R.; Lata, S.; Mehta, S. K.; Mor, S. Ultra fast effective treatment of dyes from water with the synergistic effect of Ni doped ZnO nanoparticles and ultrasonication. Ultrason. Sonochem. 2015, 22, 317–325.
Che, H. X.; Yeap, S. P.; Ahmad, A. L.; Lim, J. K. Layer-by-layer assemble of iron oxide magnetic nanoparticles decorated silica colloid for water remediation. Chem. Eng. J. 2014, 243, 68–78.
Cao, J.; Li, J. C.; Liu, L.; Xie, A. J.; Li, S. K.; Qiu, L. G.; Yuan, Y. P.; Shen, Y. H. One-pot synthesis of novel Fe3O4/Cu2O/PANI nanocomposites as absorbents in water treatment. J. Mater. Chem. A 2014, 2, 7953.
Bhaumik, M.; Choi, H. J.; McCrindle, R. I.; Maity, A. Composite nanofibers prepared from metallic iron nanoparticles and polyaniline: High performance for water treatment applications. J. Colloid Interf. Sci. 2014, 425, 75–82.
Liang, S.; Qi, G. G.; Xiao, K.; Sun, J. Y.; Giannelis, E. P.; Huang, X.; Elimelech, M. Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: Implications for organic fouling in membrane bioreactors. J. Memb. Sci. 2014, 463, 94–101.
Yu, L.; Peng, X. J.; Ni, F.; Li, J.; Wang, D. S.; Luan, Z. K. Arsenite removal from aqueous solutions by γ-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption. J. Hazard. Mater. 2013, 246–247, 10–17.
Weng, X. L.; Lin, S.; Zhong, Y. H.; Chen, Z. L. Chitosan stabilized bimetallic Fe/Ni nanoparticles used to remove mixed contaminants-amoxicillin and Cd (Ⅱ) from aqueous solutions. Chem. Eng. J. 2013, 229, 27–34.
Chalasani, R.; Vasudevan, S. Cyclodextrin-functionalized Fe3O4@TiO2: Resuable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies. ACS Nano 2013, 7, 4093–4104.
Chai, L. Y.; Wang, Y. Y.; Zhao, N.; Yang, W. C.; You, X. Y. Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water. Water Res. 2013, 47, 4040–4049.
Wang, H. T.; Lin, K. -Y.; Jing, B. X.; Krylova, G.; Sigmon, G. E.; McGinn, P.; Zhu, Y. X.; Na, C. Z. Removal of oil droplets from contaminated water using magnetic carbon nanotubes. Water Res. 2013, 47, 4198–4205.
Zelmanov, G.; Semiat, R. Boron removal from water and its recovery using iron (Fe+3) oxide/hydroxide-based nanoparticles (NanoFe) and NanoFe-impregnated granular activated carbon as adsorbent. Desalination 2014, 333, 107–117.
Das, S. K.; Khan, M. M. R.; Parandhaman, T.; Laffir, F.; Guha, A. K.; Sekaran, G.; Mandal, A. B. Nano-silica fabricated with silver nanoparticles: Antifouling adsorbent for efficient dye removal, effective water disinfection and biofouling control. Nanoscale 2013, 5, 5549–5560.
Ayati, A.; Ahmadpour, A.; Bamoharram, F. F.; Tanhaei, B.; Manttari, M.; Sillanpaa, M. A review on catlaytic applications of Au/TiO2 nanoparticles in the removal of water pollutant. Chemosphere 2014, 107, 163–174.
Qu, X. L.; Alvarez, P. J. J.; Li, Q. L. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47, 3931–3946.
Vadahanambi, S.; Lee, S. -H.; Kim, W. -J.; Oh, I. -K. Arsenic removal from contaminated water using three- dimensional graphene-carbon nanotube-iron oxide nanostructures. Environ. Sci. Technol. 2013, 47, 10510–10517.
Zhang, Z. Y.; Kong, J. L. Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. J. Hazard. Mater. 2011, 193, 325–329.
Tang, S. C. N.; Lo, I. M. C. Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Res. 2013, 47, 2613–2632.
Yang, Z.; Yan, H.; Yang, H.; Li, H. B.; Li, A. M.; Cheng, R. S. Flocculation performance and mechanism of graphene oxide for removal of various contaminants from water. Water Res. 2013, 47, 3037–3046.
Kassaee, M. Z.; Motamedi, E.; Mikhak, A.; Rahnemaie, R. Nitrate removal from water using iron nanoparticles produced by arc discharge vs. reduction. Chem. Eng. J. 2011, 166, 490–495.
Ali, I. New generation adsorbents for water treatment. Chem. Rev. 2012, 112, 5073–5091.
Hua, M.; Zhang, S. J.; Pan, B. C.; Zhang, W. M.; Lv, L.; Zhang, Q. X. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 2012, 211–212, 317–331.
Auffan, M.; Achouak, W.; Rose, J.; Roncato, M. A.; Chaneac, C.; Waite, D. T.; Masion, A.; Woicik, J. C.; Wiesner, M. R.; Bottero, J. Y. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ. Sci. Technol. 2008, 42, 6730–6735.
Brunet, L.; Lyon, D. Y.; Hotze, E. M.; Alvarez, P. J. J.; Wiesner, M. R. Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ. Sci. Technol. 2009, 43, 4355–4360.
Li, Q. L.; Mahendra, S.; Lyon, D. Y.; Brunet, L.; Liga, M. V.; Li, D.; Alvarez, P. J. J. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res. 2008, 42, 4591–4602.
Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramirez, J. T.; Yacaman, M. J. The bactericidal effect of silver nanoparticles. Nanotechnol. 2005, 16, 2346–2353.
Larimer, C.; Ostrowski, N.; Speakman, J.; Nettleship, I. The segregation of silver nanoparticles in low-cost ceramic water filters. Mater. Charact. 2010, 61, 408–412.
Dankovich, T. A.; Gray, D. G. Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ. Sci. Technol. 2011, 45, 1992–1998.
Liga, M. V.; Bryant, E. L.; Colvin, V. L.; Li, Q. L. Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. Water Res. 2011, 45, 535–544.
Apalangya, V.; Rangari, V.; Tiimob, B.; Jeelani, S.; Samuel, T. Development of antimicrobial water filtration hybrid material from bio source calcium carbonate and silver nanoparticles. Appl. Surf. Sci. 2014, 295, 108–114.
Saifuddin, N.; Nian, C. Y.; Zhan, L. W.; Ning, K. X. Chitosan-silver nanoparticles composite as point-of-use drinking water filtration system for household to remove pesticides in water. Asian J. Biochem. 2011, 6, 142–159.
Auffan, M.; Rose, J.; Bottero, J. Y.; Lowry, G. V.; Jolivet, J. P.; Wiesner, M. R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009, 4, 634–641.
Auffan, M.; Rose, J.; Wiesner, M. R.; Bottero, J. Y. Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro. Environ. Pollut. 2009, 157, 1127–1133.
Kang, S.; Mauter, M. S.; Elimelech, M. Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ. Sci. Technol. 2008, 42, 7528–7534.
Lowry, G. V.; Gregory, K. B.; Apte, S. C.; Lead, J. R. Transformations of nanomaterials in the environment. Environ. Sci. Technol. 2012, 46, 6893–6899.
Boverhof, D. R.; David, R. M. Nanomaterial characterization: Considerations and needs for hazard assessment and safety evaluation. Anal. Bioanal. Chem. 2010, 396, 953–961.
Blaise, C.; Gagne, F.; Ferard, J. F.; Eullaffroy, P. Ecotoxicity of selected nano-materials to aquatic organisms. Environ. Toxicol. 2008, 23, 591–598.
Lanone, S.; Rogerieux, F.; Geys, J.; Dupont, A.; Maillot-Marechal, E.; Boczkowski, J.; Lacroix, G.; Hoet, P. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part. Fibre Toxicol. 2009, 6, 14.
Zhang, W.; Rittmann, B.; Chen, Y. S. Size effects on adsorption of hematite nanoparticles on E. coli cells. Environ. Sci. Technol. 2011, 45, 2172–2178.
Yin, L. Y.; Cheng, Y. W.; Espinasse, B.; Colman, B. P.; Auffan, M.; Wiesner, M. R.; Rose, J.; Liu, J.; Bernhardt, E. S. More than the ions: The effects of silver nanopartilces on Lolium multiflorum. Environ. Sci. Technol. 2011, 45, 2360–2367.
Franklin, N. M.; Rogers, N. J.; Apte, S. C.; Batley, G. E.; Gadd, G. E.; Casey, P. S. Nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environ. Sci. Technol. 2007, 41, 8484–8490.
Hildebrand, H.; Kuhnel, D.; Potthoff, A.; Mackenzie, K.; Springer, A.; Schirmer, K. Evaluating the cytotoxicity of palladium/magnetite nano-catalysts intended for wastewater treatment. Environ. Pollut. 2010, 158, 65–73.
Schultz, A. G.; Boyle, D.; Chamot, D.; Ong, K. J.; Wilkinson, K. J.; McGeer, J. C.; Sunahara, G.; Goss, G. G. Aquatic toxicity of manufactured nanomaterials: Challenges and recommendations for future toxicity testing. Environ. Chem. 2014, 11, 207–226.
Ma, H. B.; Williams, P. L.; Diamond, S. A. Ecotoxicity of manufactured ZnO nanoparticles - A review. Environ. Pollut. 2013, 172, 76–85.
Peulen, T. -O.; Wilkinson, K. J. Diffusion of nanoparticles in a biofilm. Environ. Sci. Technol. 2011, 45, 3367–3373.
Reidy, B.; Haase, A.; Luch, A.; Dawson, K. A.; Lynch, I. Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Mater. 2013, 6, 2295–2350.
Praetorius, A.; Scheringer, M.; Hungerbuhler, K. Development of environmental fate models for engineered nanoparticles - A case study of TiO2 nanoparticles in the Rhine River. Environ. Sci. Technol. 2012, 46, 6705–6713.
Lowry, G. V.; Espinasse, B. P.; Badireddy, A. R.; Richardson, C. J.; Reinsch, B. C.; Bryant, L. D.; Bone, A. J.; Deonarine, A.; Chae, S.; Therezien, M. et al. Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ. Sci. Technol. 2012, 46, 7027–7036.
Westerhoff, P.; Nowack, B. Searching for global descriptors of engineered nanomaterial fate and transport in the environment. Acc. Chem. Res. 2013, 46, 844–853.
Gavankar, S.; Suh, S.; Keller, A. F. Life cycle assessment at nanoscale: Review and recommendations. Int. J. Life Cycle Assess. 2012, 17, 295–303.
Cornelis, G.; Hund-Rinke, K.; Kuhlbusch, T.; van den Brink, N.; Nickel, C. Fate and bioavailability of engineered nanoparticles in soils: A review. Crit. Rev. Env. Sci. Technol. 2014, 44, 2720–2764.
Chalew, T. E. A.; Ajmani, G. S.; Huang, H. O.; Schwab, K. J. Evaluating nanoparticle breakthrough during drinking water treatment. Environ. Health Persp. 2013, 121, 1161–1166.
Zhu, Y. Q.; Fan, L.; Yang, B.; Du, J. Z. Multifunctional homopolymer vesicles for facile immobilization of gold nanoparticles and effective water remediation. ACS Nano 2014, 8, 5022–5031.
Westerhoff, P.; Song, G. X.; Hristovski, K.; Kiser, M. A. Occurrence and removal of titanium at full scale wastewater treatment plants: Implications for TiO2 nanomaterials. J. Environ. Monit. 2011, 13, 1195.
Rottman, J.; Sierra-Alvarez, R.; Shadman, F. Real-time monitoring of nanoparticle retention in porous media. Environ. Chem. Lett. 2013, 11, 71–76.
Rahman, T.; Millwater, H.; Shipley, H. J. Modeling and sensitivity analysis on the transport of aluminum oxide nanoparticles in saturated sand: Effects of ionic strength, flow rate, and nanoparticle concentration. Sci. Total Environ. 2014, 499, 402–412.
Wu, N.; Wyart, Y.; Liu, Y.; Rose, J.; Moulin, P. An overview of solid/liquid separation methods and size fractionation techniques for engineered nanomaterials in aquatic environment. Environ. Technol. Rev. 2013, 2, 55–70.
Westerhoff, P. K.; Kiser, M. A.; Hristovski, K. Nanomaterial removal and transformation during biological wastewater treatment. Environ. Eng. Sci. 2013, 30, 109–117.
Ferreira da Silva, B.; Perez, S.; Gardinalli, P.; Singhal, R. K.; Mozeto, A. A.; Barcelo, D. Analytical chemistry of metallic nanoparticles in natural environments. TrAC-Trend. Anal. Chem. 2011, 30, 528–540.
von der Kammer, F.; Ferguson, P. L.; Holden, P. A.; Masion, A.; Rogers, K. R.; Klaine, S. J.; Koelmans, A. A.; Horne, N.; Unrine, J. M. Analysis of engineered nanomaterials in complex matrices (environment and biota): General considerations and conceptual case studies. Environ. Toxicol. Chem. 2012, 31, 32–49.
Weinberg, H.; Galyean, A.; Leopold, M. Evaluating engineered nanoparticles in natural waters. TrAC-Trend. Anal. Chem. 2011, 30, 72–83.
Dreyer, D. R.; Miller, D. J.; Freeman, B. D.; Paul, D. R.; Bielawski, C. W. Elucidating the structure of poly(dopamine). Langmuir 2012, 28, 6428–6435.
Kasemset, S.; Lee, A.; Miller, D. J.; Freeman, B. D.; Sharma, M. M. Effect of polydopamine deposition conditions on fouling resistance, physical properties, and permeation properties of reverse osmosis membranes in oil/water separation. J. Memb. Sci. 2013, 425, 208–216.
McCloskey, B. D.; Park, H. B.; Ju, H.; Rowe, B. W.; Miller, D. J.; Chun, B. J.; Kin, K.; Freeman, B. D. Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes. Polymer 2010, 51, 3472–3485.
Miller, D. J.; Araujo, P. A.; Correia, P. B.; Ramsey, M. M.; Kruithof, J. C.; van Loosdrecht, M. C. M.; Freeman, B. D.; Paul, D. R.; Whiteley, M.; Vrouwenvelder, J. S. Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control. Water Res. 2012, 46, 3737–3753.
McCloskey, B. D.; Park, H. B.; Ju, H.; Rowe, B. W.; Miller, D. J.; Freeman, B. D. A bioinspired fouling-resistant surface modification for water purification membranes. J. Memb. Sci. 2012, 413–414, 82–90.
Tang, Z. H.; Qiu, C. Q.; McCutcheon, J. R.; Yoon, K.; Ma, H. Y.; Fang, D. F.; Lee, E.; Kopp, C.; Hsiao, B. S.; Chu, B. Design and fabrication of electrospun polyethersulfone nanofibrous scaffold for high-flux nanofiltration membranes. J. Polym. Sci. B Polym. Phys. 2009, 47, 2288–2300.
Bui, N. -N.; McCutcheon, J. R. Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis. Environ. Sci. Technol. 2013, 47, 1761–1769.
Huang, L.; Bui, N. -N.; Manickam, S. S.; McCutcheon, J. R. Controlling electrospun nanofiber morphology and mechanical properties using humidity. J Polym. Sci. B Polym. Phys. 2011, 49, 1734–1744.
Jackson, E. A.; Hillmyer, M. A. Nanoporous membranes derived from block copolymers: From drug delivery to water filtration. ACS Nano 2010, 4, 3548–3553.
Phillip, W. A.; O'Neill, B.; Rodwogin, M.; Hillmyer, M. A.; Cussler, E. L. Self-assembled block copolymer thin films as water filtration membranes. ACS App. Mater. Int. 2010, 2, 847–853.
Yeo, J.; Kim, S. Y.; Kim, S.; Ryu, D. Y.; Kim, T. -H.; Park, M. J. Mechanically and structurally robust sulfonated block copolymer membranes for water purification applications. Nanotechnol. 2012, 23, 245703.
Wandera, D.; Himstedt, H. H.; Marroquin, M.; Wickramasinghe, S. R.; Husson, S. M. Modification of ultrafiltration membranes with block copolymer nanolayers for produced water treatment: The roles of polymer chain density and polymerization time on performance. J. Memb. Sci. 2012, 403, 250–260.
Karunakaran, M.; Nunes, S. P.; Qiu, X. Y.; Yu, H. Z.; Peinemann, K. -V. Isoporous PS-b-PEO ultrafiltration membranes via self-assembly and water-induced phase separation. J. Memb. Sci. 2014, 453, 471–477.
Marques, D. S.; Vainio, U.; Chaparro, N. M.; Carlo, V. M.; Behzad, A. R.; Pitera, J. W.; Peinemann, K. -V.; Nunes, S. P. Self-assembly in casting solutions of block copolymer membranes. Soft Mat. 2013, 9, 5557–5564.
Nunes, S. P.; Behzad, A. R.; Peinemann, K. -V. Self-assembled block copolymer membranes: From basic research to large scale manufacturing. J. Mater. Res. 2013, 28, 2661–2665.
Dorin, R. M.; Phillip, W. A.; Sai, H.; Werner, J.; Elimelech, M.; Wiesner, U. Designing block copolymer architectures for targeted membrane performance. Polymer 2014, 55, 347–353.
Phillip, W. A.; Dorin, R. M.; Werner, J.; Hoek, E. M. V.; Wiesner, U.; Elimelech, M. Tuning structure and properties of graded triblock terpolymer-based mesoporous and hybrid films. Nano Lett. 2011, 11, 2892–2900.
Gu, Y. B.; Dorin, R. M.; Wiesner, U. Asymmetric organic-inorganic hybrid membrane formation via block copolymer-nanoparticle co-assembly. Nano Lett. 2013, 13, 5323–5328.
Hoheisel, T. N.; Hur, K.; Wiesner, U. B. Block copolymer-nanoparticle hybrid self-assembly. Prog. Polym. Sci. 2015, 40, 3–32.
Warren, S. C.; Messina, L. C.; Slaughter, L. S.; Kamperman, M.; Zhou, Q.; Gruner, S. M.; DiSalvo, F. J.; Wiesner, U. Ordered mesoporous materials from metal nanoparticle-block copolymer self-assembly. Science 2008, 320, 1748–1752.
Bokare, A. D.; Chikate, R. C.; Rode, C. V.; Paknikar, K. M. Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Appl. Catal. B 2008, 79, 270–278.
Fang, Z. Q.; Qiu, X. H.; Chen, J. H.; Qiu, X. Q. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: Influencing factors, kinetics, and mechanism. J. Hazard. Mater. 2011, 185, 958–969.
Cao, J.; Xu, R. F.; Tang, H.; Tang, S. S.; Cao, M. H. Synthesis of monodispersed CMC-stabilized Fe-Cu bimetal nanoparticles for in situ reductive dechlorination of 1, 2, 4-trichlorobenzene. Sci. Total Environ. 2011, 409, 2336–2341.
Choi, K.; Lee, W. Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu(Ⅱ). J. Hazard. Mater. 2012, 211–, 146–153.
Chun, C. L.; Baer, D. R.; Matson, D. W.; Amonette, J. E.; Penn, R. L. Characterization and reactivity of iron nanoparticles prepared with added Cu, Pd, and Ni. Environ. Sci. Technol. 2010, 44, 5079–5085.
Joo, S. H.; Feitz, A. J.; Waite, T. D. Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environ. Sci. Technol. 2004, 38, 2242–2247.
Keenan, C. R.; Sedlak, D. L. Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol. 2008, 42, 6936–6941.
Lee, C.; Keenan, C. R.; Sedlak, D. L. Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen. Environ. Sci. Technol. 2008, 42, 4921–4926.
Hooshyar, Z.; Bardajee, G. R.; Ghayeb, Y. Sonication enhanced removal of nickel and cobalt ions from polluted water using an iron based sorbent. J. Chem. 2012, 2013, 786954.
Hug, S. J.; Leupin, O. Iron-catalyzed oxidation of arsenic(Ⅲ) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ. Sci. Technol. 2003, 37, 2734–2742.
Liu, T. Z.; Tsang, D. C. W.; Lo, I. M. C. Chromium(VI) reduction kinetics by zero-valent iron in moderately hard water with humic acid: Iron dissolution and humic acid adsorption. Environ. Sci. Technol. 2008, 42, 2092–2098.
Armon, R.; Weltch-Cohen, G.; Bettane, P. Disinfection of Bacillus spp. spores in drinking water by TiO2 photocatalysis as a model for Bacillus anthracis. Water Sci. Technol. Water Supp. 2004, 4, 7–14.
Antoniou, M. G.; Nicolaou, P. A.; Shoemaker, J. A.; de la Cruz, A. A.; Dionysiou, D. D. Impact of the morphological properties of thin TiO2 photocatalytic films on the detoxification of water contaminated with the cyanotoxin, microcystin-LR. Appl. Catal. B Env. 2009, 91, 165–173.
Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y.; Li, J. H. P25-graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380–386.
Jain, S.; Yamgar, R.; Jayaram, R. V. Photolytic and photocatalytic degradation of atrazine in the presence of activated carbon. Chem. Eng. J. 2009, 148, 342–347.
Žabar, R.; Komel, T.; Fabjan, J.; Kralj, M. B.; Trebše, P. Photocatalytic degradation with immobilised TiO2 of three selected neonicotinoid insecticides: Imidacloprid, thiamethoxam and clothianidin. Chemosphere 2012, 89, 293–301.
Tu, W. G.; Zhou, Y.; Zou, Z. G. Versatile graphene-promoting photocatalytic performance of semiconductors: Basic principles, synthesis, solar energy conversion, and environmental applications. Adv. Func. Mater. 2013, 23, 4996–5008.
Bae, E. Y.; Choi, W. Y. Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environ. Sci. Technol. 2003, 37, 147–152.
Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555–1614.
Su, R.; Tiruvalam, R.; He, Q.; Dimitratos, N.; Kesavan, L.; Hammond, C.; Lopez-Sanchez, J. A.; Bechstein, R.; Kiely, C. J.; Hutchings, G. J. et al. Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au-Pd nanoparticles. ACS Nano 2012, 6, 6284–6292.
Zhang, W. J.; Zhou, C. J.; Zhou, W. C.; Lei, A. H.; Zhang, Q. L.; Wan, Q.; Zou, B. S. Fast and considerable adsorption of methylene blue dye onto graphene oxide. Bull. Environ. Contam. Toxicol. 2011, 87, 86–90.
Ion, A. C.; Alpatova, A.; Ion, I.; Culetu, A. Study on phenol adsorption from aqueous solutions on exfoliated graphitic nanoplatelets. Mater. Sci. Eng. B. 2011, 176, 588–595.
Lu, K.; Zhao, G. X.; Wang, X. K. A brief review of graphene-based material synthesis and its application in environmental pollution management. Chinese Sci. Bull. 2012, 57, 1223–1234.
Zhao, G. X.; Li, J. X.; Ren, X. M.; Chen, C. L.; Wang, X. K. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol. 2011, 45, 10454–10462.
Sun, Y. B.; Wang, Q.; Chen, C. L.; Tan, X. L.; Wang, X. K. Interaction between Eu(Ⅲ) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ. Sci. Technol. 2012, 46, 6020–6027.
Hu, M.; Mi, B. X. Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction. J. Membr. Sci. 2014, 469, 80–87.
O'Hern, S. C.; Boutilier, M. S. H.; Idrobo, J. C.; Song, Y.; Kong, J.; Laoui, T.; Atieh, M.; Karnik, R. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 2014, 14, 1234–1241.
Yeh, C. -N.; Raidongia, K.; Shao, J. J.; Yang, Q. -H.; Huang, J. X. On the origin of the stability of graphene oxide membranes in water. Nature Chem. 2015, 7, 166–170.
Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded permeation of water through Helium-leak-tight graphen-based membranes. Science 2012, 335, 442–444.
Greenlee, L. F.; Hooker, S. A. Development of stabilized zero valent iron nanoparticles. Desalin. Water Treat. 2012, 37, 114–121.
Greenlee, L. F.; Torrey, J. D.; Amaro, R. L.; Shaw, J. M. Kinetics of zero valent iron nanoparticle oxidation in oxygenated water. Environ. Sci. Technol. 2012, 46, 12913–12920.
Bhattacharyya, D. Functionalized membranes and environmental applications. Clean Technol. Envr. 2007, 9, 81–83.
Pendergast, M. M. Separation performance and interfacial properties of nanocomposite reverse osmosis membranes. Desalination 2013, 308, 180–185.
Pendergast, M. M.; Hoek, E. M. V. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 2011, 4, 1946–1971.
Han, Y.; Xu, Z.; Gao, C. Ultrathin graphene nanofiltratrion membrane for water purification. Adv. Funct. Mater. 2013, 23, 3693–3700.
Bedford, N. M.; Pelaez, M.; Han, C. S.; Dionysiou, D. D.; Steckl, A. J. Photocatalytic cellulosic electrospun fibers for the degradation of potent cyanobacteria toxin microcystin-LR. J. Mater. Chem. 2012, 22, 12666–12674.
Byun, S.; Davies, S. H.; Alpatova, A. L.; Corneal, L. M.; Baumann, M. J.; Tarabara, V. V.; Masten, S. J. Mn oxide coated catalytic membranes for a hybrid ozonation-membrane filtration: Comparison of Ti, Fe and Mn oxide coated membranes for water quality. Water Res. 2011, 45, 163–170.
Choi, J. H.; Jegal, J.; Kim, W. N. Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J. Memb. Sci. 2006, 284, 406–415.
Dotzauer, D. A.; Bhattacharjee, S.; Wen, Y.; Bruening, M. L. Nanoparticle-containing membranes for the catalytic reduction of nitroaromatic compounds. Langmuir 2009, 25, 1865–1871.
Gui, M. H.; Smuleac, V.; Ormsbee, L. E.; Sedlak, D. L.; Bhattacharyya, D. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water. J. Nanopart. Res. 2012, 14, 861.
Lee, H. S.; Im, S. J.; Kim, J. H.; Kim, H. J.; Kim, J. P.; Min, B. R. Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination 2008, 219, 48–56.
Lind, M. L.; Suk, D. E.; Nguyen, T. V.; Hoek, E. M. V. Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance. Environ. Sci. Technol. 2010, 44, 8230–8235.
Liang, S.; Xiao, K.; Mo, Y. H.; Huang, X. A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. J. Memb. Sci. 2012, 394, 184–192.
Smuleac, V.; Varma, R.; Sikdar, S.; Bhattacharyya, D. Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J. Memb. Sci. 2011, 379, 131–137.
Taurozzi, J. S.; Arul, H.; Bosak, V. Z.; Burban, A. F.; Voice, T. C.; Bruening, M. L.; Tarabara, V. V. Effect of filler incorporation route on the properties of polysulfone-silver nanocomposite membranes of different porosities. J. Memb. Sci. 2008, 325, 58–68.
Xu, J.; Dozier, A.; Bhattacharyya, D. Synthesis of nanoscale bimetallic particles in polyelectrolyte membrane matrix for reductive transformation of halogenated organic compounds. J. Nanopart. Res. 2005, 7, 449–467.
Yang, Y. N.; Zhang, H. X.; Wang, P.; Zheng, Q. Z.; Li, J. The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. J. Memb. Sci. 2007, 288, 231–238.
Zhu, C. Q.; Li, H.; Zeng, X. C.; Wang, E. G.; Meng, S. Quantized water transport: Ideal desalination through graphyne-4 membrane. Sci. Rep. 2013, 3, 3163.
Guillot, B. A reappraisal of what we have learnt during three decades of computer simulations on water. J. Mol. Liq. 2002, 101, 219–260.
Yoo, S.; Zeng, X. C.; Xantheas, S. S. On the phase diagram of water with density functional theory potentials: The melting temperature of ice Ih with the Perdew-Burke-Ernzerhof and Becke-Lee-Yang-Parr functionals. J. Chem. Phys. 2009, 130, 221102.