AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Basic science of water: Challenges and current status towards a molecular picture*

Sheng Meng1( )Lauren F. Greenlee2( )Yuen Ron Shen3Enge Wang4
Beijing National Lab for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
Applied Chemicals and Materials DivisionNational Institute of Standards and Technology, 325 Broadway, MS 647, BoulderCO80305USA
Department of PhysicsUniversity of California, BerkeleyCA94720USA
International Center for Quantum MaterialsSchool of PhysicsPeking UniversityBeijing100871China
Show Author Information

Graphical Abstract

Abstract

Rapid developments in both fundamental science and modern technology that target water-related problems, including the physical nature of our planet and environment, the origin of life, energy production via water splitting, and water purification, all call for a molecular-level understanding of water. This invokes relentless efforts to further our understanding of the basic science of water. Current challenges to achieve a molecular picture of the peculiar properties and behavior of water are discussed herein, with a particular focus on the structure and dynamics of bulk and surface water, the molecular mechanisms of water wetting and splitting, application-oriented research on water decontamination and desalination, and the development of complementary techniques for probing water at the nanoscale.

References

1

Raviv, U.; Laurat, P.; Klein, J. Fluidity of water confined to subnanometer films. Nature 2001, 413, 51–54.

2

Wernet, P.; Nordlund, D.; Bergmann, U.; Cavalleri, M.; Odelius, M.; Ogasawara, H.; Näslund, L. Å.; Hirsch, T. K.; Ojamäe, L.; Glatzel, P. et al. The structure of the first coordination shell in liquid water. Science 2004, 304, 995–999.

3

Smith, J. D.; Cappa, C. D.; Wilson, K. R.; Messer, B. M.; Cohen, R. C.; Saykally, R. J. Energetics of hydrogen bond network rearrangements in liquid water. Science 2004, 306, 851–853.

4

Head-Gordon, T.; Johnson, M. E. Tetrahedral structure or chains for liquid water. Proc. Natl. Acad. Sci. USA 2006, 103, 7973–7977.

5

Doering, D. L.; Madey, T. E. The adsorption of water on clean and oxygen-dosed Ru(011). Surf. Sci. 1982, 123, 305–337.

6

Held, G.; Menzel, D. The structure of the p(√3×√3)R30° bilayer of D2O on Ru(001). Surf. Sci. 1994, 316, 92–102.

7

Feibelman, P. J. Partial dissociation of water on Ru(0001). Science 2002, 295, 99–102.

8

Cerdá, J.; Michaelides, A.; Bocquet, M. -L.; Feibelman, P. J.; Mitsui, T.; Rose, M.; Fomin, E.; Salmeron, M. Novel water overlayer growth on Pd(111) characterized with scanning tunneling microscopy and density functional theory. Phys. Rev. Lett. 2004, 93, 116101.

9

Carrasco, J.; Michaelides, A.; Forster, M.; Haq, S.; Raval, R.; Hodgson, A. A one-dimensional ice structure built from pentagons. Nat. Mater. 2009, 8, 427–431.

10

Nie, S.; Feibelman, P. J.; Bartelt, N. C.; Thürmer, K. Pentagons and heptagons in the first water layer on Pt(111). Phys. Rev. Lett. 2010, 105, 026102.

11

Carrasco, J.; Hodgson, A.; Michaelides, A. A molecular perspective of water at metal interfaces. Nat. Mater. 2012, 11, 667–674.

12

Lin, K.; Zhou, X. -G.; Liu, S. L.; Luo, Y. Identification of free OH and its implication on structural changes of liquid water. Chin. J. Chem. Phys. 2013, 26, 121.

13

Mishima, O. Relationship between melting and amorphization of ice. Nature 1996, 384, 546–549.

14

Loerting, T.; Salzmann, C.; Kohl, I.; Mayer, E.; Hallbrucker, A. A second distinct structural "state" of high-density amorphous ice at 77 K and 1 bar. Phys. Chem. Chem. Phys. 2001, 3, 5355–5357.

15

Denbenedetti, P. G.; Stanley, H. E. Supercooled and glassy water. Phys. Today 2003, 56, 40–46.

16

Xu, L. M.; Kumar, P.; Buldyrev, S. V.; Chen, S. H.; Poole, P. H.; Sciortino, F.; Stanley, H. E. Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid phase transition. Proc. Natl. Acad. Sci. USA 2005, 102, 16558–16562.

17

Hoffmann, M. M.; Conradi, M. S. Are there hydrogen bonds in supercritical water? J. Am. Chem. Soc. 1997, 119, 3811–3817.

18

Sahle, C. J.; Sternemann, C.; Schmidt, C.; Lehtola, S.; Jahn, S.; Simonelli, L.; Huotari, S.; Hakala, M.; Pylkkänen, T.; Nyrow, A. et al. Microscopic structure of water at elevated pressures and temperatures. Proc. Natl. Acad. Sci. USA 2013, 110, 6301–6306.

19

Tretyakov, M. Y.; Serov, E. A.; Koshelev, M. A.; Parshin, V. V.; Krupnov, A. F. Water dimer rotationally resolved millimeter-wave spectrum observation at room temperature. Phys. Rev. Lett. 2013, 110, 093001.

20

Cho, C. H.; Singh, S.; Robinson, G. W. Understanding all of water's anomalies with a nonlocal potential. J. Chem. Phys. 1997, 107, 7979–7988.

21

Tanaka, H. Simple physical explanation of the unusual thermodynamic behavior of liquid water. Phys. Rev. Lett. 1998, 80, 5750–5753.

22

Vedamuthu, M.; Singh, S.; Robinson, G. W. Properties of liquid water: Origin of the density anomalies. J. Phys. Chem. 1994, 98, 2222–2230.

23

Vedamuthu, M.; Singh, S.; Robinson, G. W. Accurate mixture- model densities for D2O. J. Phys. Chem. 1994, 98, 8591–8593.

24

Dougherty, R. C.; Howard, L. N. Equilibrium structural model of liquid water: Evidence from heat capacity, spectra, density, and other properties. J. Chem. Phys. 1998, 109, 7379–7393.

25

Alphonse, N. K.; Dillon, S. R.; Dougherty, R. C.; Galligan, D. K.; Howard, L. N. Direct Raman evidence for a weak continuous phase transition in liquid water. J. Phys. Chem. A 2006, 110, 7577–7580.

26

Franzese, G.; Stanley, H. E. The Widom line of supercooled water. J. Phys. -Condens. Matter 2007, 19, 205126.

27

Kumar, P.; Franzese, G.; Stanley, H. E. Dynamics and thermodynamics of water. J. Phys. -Condens. Matter 2008, 20, 244114.

28

Angell, C. A.; Bressel, R. D.; Hemmati, M.; Sare, E. J.; Tucker, J. C. Water and its anomalies in perspective: Tetrahedral liquids with and without liquid-liquid phase transitions. Phys. Chem. Chem. Phys. 2000, 2, 1559–1566.

29

Kumar, P.; Stanley, H. E. Thermal conductivity minimum: A new water anomaly. J. Phys. Chem. B 2011, 115, 14269–14273.

30

Murphy, D. M.; Koop, T. Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q. J. R. Meteorol. Soc. 2005, 131, 1539–1565.

31

Mpemba, E. B.; Osborne, D. G. Cool? Phys. Educ. 1969, 4, 172–175.

32

Shell, M. S.; Debenedetti, P. G.; Panagiotopoulos, A. Z. Molecular structural order and anomalies in liquid silica. Phys. Rev. E 2002, 66, 011202.

33

Hujo, W.; Jabes, B. S.; Rana, V. K.; Chakravarty, C.; Molinero, V. The rise and fall of anomalies in tetrahedral liquids. J. Stat. Phys. 2011, 145, 293–312.

34

Jabes, B. S.; Nayar, D.; Dhabal, D.; Molinero, V.; Chakrabarty, C. Water and other tetrahedral liquids: Order, anomalies and solvation. J. Phys. -Condens. Matter 2012, 24, 284116.

35

Marx, D.; Tuckerman, M. E.; Hutter, J.; Parrinello, M. The nature of hydrated excess proton in water. Nature 1999, 397, 601–604.

36

Ranea, V. A.; Michaelides, A.; Ramírez, R.; de Andres, P. L.; Vergés, J. A.; King, D. A. Water dimer diffusion on Pd{111} assisted by an H-bond donor-acceptor tunneling exchange. Phys. Rev. Lett. 2004, 92, 136104.

37

Tuckerman, M. E.; Marx, D.; Parrinello, M. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 2002, 417, 925–929.

38

Li, X. -Z.; Walker, B.; Michaelides, A. Quantum nature of the hydrogen bond. Proc. Natl. Acad. Sci. USA 2011, 108, 6369–6373.

39

Chen, J.; Li, X. Z.; Zhang, Q. F.; Michaelides, A.; Wang, E. G. Nature of proton transport in a water-filled carbon nanotube and in liquid water. Phys. Chem. Chem. Phys. 2013, 15, 6344–6349.

40

Li, X. Z.; Probert, M. I. J.; Alavi, A.; Michaelides, A. Quantum nature of the proton in water-hydroxyl overlayers on metal surfaces. Phys. Rev. Lett. 2010, 104, 066102.

41

Paesani, F.; Voth, G. A. The properties of water: Insights from quantum simulations. J. Phys. Chem. B 2009, 113, 5702–5719.

42

Thiel, P. A.; Madey, T. E. The interaction of water with solid surfaces: Fundamental aspects. Surf. Sci. Rep. 1987, 7, 211–385.

43

Henderson, M. A. The interaction of water with solid surfaces: Fundamental aspects. Surf. Sci. Rep. 2002, 46, 1–308.

44

Hodgson, A.; Haq, S. Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 2009, 64, 381–451.

45

Kasemo, B. Biological surface science. Curr. Opin. Solid State Mater. Sci. 1998, 3, 451–459.

46

Odelius, M.; Bernasconi, M.; Parrinello, M. Two dimensional ice adsorbed on mica surface. Phys. Rev. Lett. 1997, 78, 2855–2858.

47

Meng, S.; Zhang, Z. Y.; Kaxiras, E. Tuning solid surfaces from hydrophobic to superhydrophilic by submonolayer surface modification. Phys. Rev. Lett. 2006, 97, 036107.

48

Cheh, J.; Gao, Y.; Wang, C. L.; Zhao, H.; Fang, H. P. Ice or water: Thermal properties of monolayer water adsorbed on a substrate. J. Stat. Mech. 2013, 2013, P06009.

49

Feibelman, P. J. DFT versus the "real world" (or, waiting for Godft). Top. Catal. 2010, 53, 417–422.

50

Meng, S.; Wang, E. G.; Gao, S. W. A molecular picture of hydrophilic and hydrophobic interactions from ab initio density functional theory calculations. J. Chem. Phys. 2003, 119, 7617–7620.

51

Smith, R. S.; Huang, C.; Wong, E. K. L.; Kay, B. D. Desorption and crystallization kinetics in nanoscale thin films of amorphous water ice. Surf. Sci. 1996, 367, L13–L18.

52

Wang, C. L.; Lu, H. J.; Wang, Z. G.; Xiu, P.; Zhou, B.; Zuo, G. H.; Wan, R. Z.; Hu, J.; Fang, H. P. Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates. Phys. Rev. Lett. 2009, 103, 137801.

53

Zhu, C. Q.; Li, H.; Huang, Y. F.; Zeng, X. C.; Meng, S. Microscopic insight into surface wetting: Relations between interfacial water structure and the underlying lattice constant. Phys. Rev. Lett. 2013, 110, 126101.

54

Choi, C. L.; Feng, J.; Li, Y. G.; Wu, J.; Zak, A.; Tenne, R.; Dai, H. J. WS2 nanoflakes from nanotubes for electrocatalysis. Nano Res. 2013, 6, 921–928.

55

Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

56

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

57

Wang, M.; Ren, F.; Cai, G. X.; Liu, Y. C.; Shen, S. H.; Guo, L. J. Activating ZnO nanorod photoanodes in visible light by Cu ion implantation. Nano Res. 2014, 7, 353–364.

58

Song, S. M.; Wang, W. Z.; Jiang, D.; Zhang, L.; Li, X. M.; Zheng, Y. L.; An, Q. Bi2WO6 quantum dot-intercalated ultrathin montmorillonite nanostructure and its enhanced photocatalytic performance. Nano Res. 2014, 7, 1497–1506.

59

Ling, X. Y.; Yan, R. X.; Lo, S.; Hoang, D. T.; Liu, C.; Fardy, M. A.; Khan, S. B.; Asiri, A. M.; Bawaked, S. M.; Yang, P. D. Alumina-coated Ag nanocrystal monolayers as surfaceenhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Res. 2014, 7, 132–143.

60

Yagi, M.; Kaneko, M. Molecular catalysts for water oxidation. Chem. Rev. 2001, 101, 21–35.

61

Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

62

Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

63

Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2013, 42, 2294–2320.

64

Guo, Q.; Xu, C. B.; Ren, Z. F.; Yang, W. S.; Ma, Z. B.; Dai, D. X.; Fan, H. J.; Minton, T. K.; Yang, X. M. Stepwise photocatalytic dissociation of methanol and water on a TiO2(110) surface. J. Am. Chem. Soc. 2012, 134, 13366–13373.

65

Chiashi, S.; Hanashima, T.; Mitobe, R.; Nagatsu, K.; Yamamoto, T.; Homma, Y. Water encapsulation control in individual single-walled carbon nanotubes by laser irradiation. J. Phys. Chem. Lett. 2014, 5, 408–412.

66

Soper, A. K.; Bruni, F.; Ricci, M. A. Water confined in Vycor glass. Ⅱ. Excluded volume effects on the radial distribution functions. J. Phys. Chem. 1998, 109, 1486–1494.

67

Weik, M. Low-temperature behavior of water confined by biological macromolecules and its relation to protein dynamics. Eur. Phys. J. E-Soft Matter Biol. Phys. 2003, 12, 153–158.

68

Koga, K.; Gao, G. T.; Tanka, H.; Zeng, X. C. Formation of ordered ice nanotubes inside carbon nanotubes. Nature 2001, 412, 802–805.

69

Kolesnikov, A. I.; Zanotti, J. -M.; Loong, C. -K.; Thiyaigarajan, P.; Moravsky, A. P.; Loutfy, R. O.; Burnham, C. J. Anomalously soft dynamics of water in a nanotube: A revelation of nanoscale confinement. Phys. Rev. Lett. 2004, 93, 035503.

70

Bergman, R.; Swenson, J. Dynamics of supercooled water in confined geometry. Nature 2000, 403, 283–286.

71

Su, X. C.; Lianos, L.; Shen, Y. R.; Somorjai, G. A. Surface-induced ferroelectric ice on Pt(111). Phys. Rev. Lett. 1998, 80, 1533.

72

Meng, S.; Chakarov, D. V.; Kasemo, B.; Gao, S. W. Two dimensional hydration shells of alkali metal ions at a hydrophobic surface. J. Chem. Phys. 2004, 121, 12572.

73

Meng, S.; Gao, S. W. Formation and interaction of hydrated alkali metal ions at the graphite-water interface. J. Chem. Phys. 2006, 125, 014708.

74

Matsui, H.; Tadokoro, M. Eigen-like hydrated protons traveling with a local distortion through the water nanotube in new molecular porous crystals {[M(H2bim)3](TMA)·20H2O}n (M = Co, Rh, Ru). J. Chem. Phys. 2012, 137, 144503.

75

Zhao, Y.; Li, H.; Zeng, X. C. First-principles molecular dynamics simulation of atmospherically relevant anion solvation in supercooled water droplet. J. Am. Chem. Soc. 2013, 135, 15549–15558.

76

Loris, R.; Langhorst, U.; De Vos, S.; Decanniere, K.; Bouckaert, J.; Maes, D.; Transue, T. R.; Steyaert, J. Conserved water molecules in a large family of microbial ribonucleases. Proteins-Struct., Funct., Bioinf. 1999, 36, 117–134.

77

Murata, K.; Mitsuoka, K.; Hirai, T.; Walz, T.; Agre, P.; Heymann, J. B.; Engel, A.; Fujiyoshi, Y. Structural determinants of water permeation through aquaporin-1. Nature 2000, 407, 599–605.

78

Pal, S. K.; Peon, J.; Zewail, A. H. Biological water at the protein surface: Dynamical solvation probed directly with femtosecond resolution. Proc. Natl. Acad. Sci. USA 2002, 99, 1763–1768.

79

Zhong, D. P.; Pal, S. K.; Zewail, A. H. Biological water: A critique. Chem. Phys. Lett. 2011, 503, 1–11.

80

Kropman, M. F.; Bakker, H. J. Dynamics of water molecules in aqueous solvation shells. Science 2001, 291, 2118–2120.

81

Das, D.; Samanta, G.; Mandal, B. K.; Chowdhury, T. R.; Chanda, C. R.; Chowdhury, P. P.; Basu, G. K.; Chakraborti, D. Arsenic in groundwater in six districts of West Bengal, India. Environ. Geochem. Health 1996, 18, 5–15.

82

Bhattacharya, P.; Mukherjee, A.; Mukherjee, A. B. Arsenic in groundwater of India. Enc. Environ. Health 2011, 150–164.

83

Devi, N. L.; Chandra, Y. I.; Qi, S. Recent status of arsenic contamination in groundwater of northeastern India - A review. Rep. Op. 2009, 1, 22–32.

84

Pal, T.; Mukherjee, P. K.; Sengupta, S.; Bhattacharyya, A. K.; Shome, S. Arsenic pollution in groundwater of West Bengal, India - An insight into the problem by subsurface sediment analysis. Gondwana Res. 2002, 5, 501–512.

85

Rodriguez-Lado, L.; Sun, G. F.; Berg, M.; Zhang, Q.; Xue, H. B.; Zheng, Q. M.; Johnson, C. A. Groundwater arsenic contamination throughout China. Science 2013, 341, 866–868.

86

Michael, H. A. An arsenic forcast for China. Science 2013, 341, 852–853.

87

Yu, G. Q.; Sun, D. J.; Zheng, Y. Health effects of exposure to natural arsenic in groundwater and coal in China: An overview of occurrence. Environ. Health Perspect. 2007, 115, 636–642.

88

Frost, F.; Franke, D.; Pierson, K.; Woodruff, L.; Raasina, B.; Davis, R.; Davies, J. A seasonal study of arsenic in groundwater, Snohomish County, Washington, USA. Environ. Geochem. Health 1993, 15, 209–214.

89

Hudak, P. F. Distribution of arsenic concentrations in groundwater of the Seymour Aquifer, Texas, USA. Int. J. Environ. Health Res. 2008, 18, 79–82.

90

Barringer, J. L.; Reilly, P. A.; Eberl, D. D.; Blum, A. E.; Bonin, J. L.; Rosman, R.; Hirst, B.; Alebus, M.; Cenno, K.; Gorska, M. Arsenic in sediments, groundwater, and streamwater of a glauconitic Coastal Plain terrain, New Jersey, USA - Chemical "fingerprints" for geogenic and anthropogenic sources. Appl. Geochem. 2011, 26, 763–776.

91

Ghanem, M.; Samhan, S.; Carlier, E.; Ali, W. Groundwater pollution due to pesticides and heavy metals in north West Bank. J. Environ. Prot. 2011, 2, 429–434.

92

Dsikowitzky, L.; Nordhaus, I.; Jennerjahn, T. C.; Khrycheva, P.; Sivatharshan, Y.; Yuwono, E.; Schwarzbauer, J. Anthropogenic organic contaminants in water, sediments and benthic organisms of the mangrove-fringed Segara Anakan Lagoon, Java, Indonesia. Mar. Pollut. Bull. 2011, 62, 851–862.

93

Thompson, B.; Adelsbach, T.; Brown, C.; Hunt, J.; Kuwabara, J.; Neale, J.; Ohlendorf, H.; Schwarzbach, S.; Spies, R.; Taberski, K. Biological effects of anthropogenic contaminants in the San Francisco Estuary. Environ. Res. 2007, 105, 156–174.

94

Feng, L. H.; Zhang, X. C.; Luo, G. Y. Research on the risk of water shortages and the carrying capacity of water resources in Yiwu, China. Hum. Ecol. Risk Assess. 2009, 15, 714–726.

95

Pomeranz, K. The great Himalayan watershed: Water shortages, mega-projects and environmental politics in China, India, and Southeast Asia. Asia Pac. J. 2009, 30-2-09.

96

Li, Y. -S.; Raso, G.; Zhao, Z. -Y.; He, Y. -K.; Ellis, M. K.; McManus, D. P. Large water management projects and schistosomiasis control, Dongting Lake Region, China. Emerg. Infect. Dis. 2007, 13, 973–979.

97

Cerci, Y. Exergy analysis of a reverse osmosis desalination plant in California. Desalination 2002, 142, 257–266.

98

Caron, D. A.; Garneau, M. -E.; Seubert, E.; Howard, M. D. A.; Darjany, L.; Schnetzer, A.; Cetinić, I.; Filteau, G.; Lauri, P.; Jones, B. et al. Harmful algae and their potential impacts on desalination operations off southern California. Water Res. 2010, 44, 385–416.

99

Lattemann, S.; Höpner, T. Environmental impact and impact assessment of seawater desalination. Desalination 2008, 220, 1–15.

100

Hutton, G. Global Costs and Benefits of Drinking-Water Supply and Sanitation Interventions to Reach the MDG Target and Universal Coverage; World Health Organization: Geneva, Switzerland, 2012.

101

Gross, B.; van Wijk, C.; Mukherjee, N. Linking Sustainability with Demand, Gender and Poverty; Water and Sanitation Program, The World Bank, IRC International Water and Sanitation Centre: Delft, The Netherlands, 2000.

102

Daughton, C. G. Non-regulated water contaminants: Emerging research. Environ. Impact Assess. Rev. 2004, 24, 711–732.

103

Richardson, S. D. Disinfection by-products and other emerging contaminants in drinking water. TrAC Trends Anal. Chem. 2003, 22, 666–684.

104

Richardson, S. D.; Ternes, T. A. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2011, 83, 4614–4648.

105

Barrett, J. R. Chemical contaminants in drinking water: Where do we go from here? Environ. Health Perspect. 2014, 122, A80.

106

Richardson, S. D. New disinfection by-product issues: Emerging DBPs and alternative routes of exposure. Global NEST J. 2005, 7, 43–60.

107

Boorman, G. A.; Dellarco, V.; Dunnick, J. K.; Chapin, R. E.; Hunter, S.; Hauchman, F.; Gardner, H.; Cox, M.; Sills, R. C. Drinking water disinfection byproducts: Review and approach to toxicity evaluation. Environ. Health Perspect. 1999, 107, 207–217.

108

Krasner, S. W.; Weinberg, H. S.; Richardson, S. D.; Pastor, S. J.; Chinn, R.; Sclimenti, M. J.; Onstad, G. D.; Thruston, A. D. Occurrence of a new generation of disinfection byproducts. Environ. Sci. Technol. 2006, 40, 7175–7185.

109

Iriarte, U.; Álvarez-Uriarte, J. I.; López-Fonseca, R.; González-Velasco, J. R. Trihalomethane formation in ozonated and chlorinated surface water. Environ. Chem. Lett. 2003, 1, 57–61.

110

Rigobello, E. S.; Dantas, A. D. B.; Bernardo, L. D.; Vieira, E. M. Removal of diclofenac by conventional drinking water treatment processes and granular activated carbon filtration. Chemosphere 2013, 92, 184–191.

111

Adams, C.; Wang, Y.; Loftin, K.; Meyer, M. Removal of antibiotics from surface and distilled water in conventional water treatment processes. J. Environ. Eng. 2002, 128, 253–260.

112

Binnie, C.; Kimber, M.; Smethurst, G. Basic Water Treatmentm, 3rd ed.; Thomas Telford Publishing, Thomas Telford, Ltd: London, 2002.

113

Guzzella, L.; Feretti, D.; Monarca, S. Advanced oxidation and adsorption technologies for organic micropollutant removal from lake water used as drinking-water supply. Water Res. 2002, 36, 4307–4318.

114

Fritzmann, C.; Löwenberg, J.; Wintgens, T.; Melin, T. State-of-the-art of reverse osmosis desalination. Desalination 2007, 216, 1–76.

115

Elimelech, M.; Phillip, W. A. The future of seawater desalination: Energy, technology and the environment. Science 2011, 333, 712–717.

116

Xu, J.; Ruan, G. L.; Chu, X. Z.; Yao, Y.; Su, B. W.; Gao, C. J. A pilot study of UF pretreatment without any chemicals for SWRO desalination in China. Desalination 2007, 207, 216–226.

117

Yip, N. Y.; Tiraferri, A.; Phillip, W. A.; Schiffrnan, J. D.; Hoover, L. A.; Kim, Y. C.; Elimelech, M. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Environ. Sci. Technol. 2011, 45, 4360–4369.

118

Gupta, V. K.; Ali, I. Water treatment by membrane filtration techniques. In Environmental Water: Advances in Treatment, Remediation and Recycling; Gupta, V. K.; Ali, I., Eds.; Elsevier B.V. : Amsterdam, The Netherlands, 2013; pp 135–154.

119

Kumar, P.; Sharma, N.; Ranjan, R.; Kumar, S.; Bhat, Z. F.; Jeong, D. K. Perspective of membrane technology in dairy industry: A review. Asian-Australas. J. Anim. Sci. 2013, 26, 1347–1358.

120

Rao, A. P.; Desai, N. V.; Rangarajan, R. Interfacially synthesized thin film composite RO membranes for seawater desalination. J. Membr. Sci. 1997, 124, 263–272.

121

Paul, D. R. The role of membrane pressure in reverse osmosis. J. App. Polym. Sci. 1972, 16, 771–782.

122

Paul, D. R. Reformulation of the solution-diffusion theory of reverse osmosis. J. Membr. Sci. 2004, 241, 371–386.

123

Gerard, R.; Hachisuka, H.; Hirose, M. New membrane developments expanding the horizon for the application of reverse osmosis technology. Desalination 1998, 119, 47–55.

124

Sidney, L.; Srinivasa, S. Seawater dimineralization by means of an osmotic membrane. In Saline Water Conversion-Ⅱ; Gould, R. F., Ed.; American Chemical Society: Washington, D. C., 1963; pp 117–132.

125

McCutcheon, J. R.; Elimelech, M. Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes. J. Membr. Sci. 2008, 318, 458–466.

126

Tang, Z. H.; Qiu, C. Q.; McCutcheon, J. R.; Yoon, K.; Ma, H. Y.; Fang, D. F.; Lee, E.; Kopp, C.; Hsiao, B. S.; Chu, B. Design and fabrication of electrospun polyethersulfone nanofibrous scaffold for high-flux nanofiltration membranes. J. Polym. Sci., Part B-Polym. Phys. 2009, 47, 2288–2300.

127

Arena, J. T.; McCloskey, B.; Freeman, B. D.; McCutcheon, J. R. Surface modification of thin film composite membrane support layers with polydopamine: Enabling use of reverse osmosis membranes in pressure retarded osmosis. J. Membr. Sci. 2011, 375, 55–62.

128

Bui, N. -N.; Lind, M. L.; Hoek, E. M. V.; McCutcheon, J. R. Electrospun nanofiber supported thin film composite membranes for engineered osmosis. J. Membr. Sci. 2011, 385386, 10–19.

129

Loeb, S. The Loeb-Sourirajan membrane: How it came about. In ACS Symposium Series - Synthetic Membranes: Desalination; Turbak, A. F., Ed.; American Chemical Society: Washington, D. C., 1981; pp 1–9.

130

Lien, H. -L.; Wilkin, R. T. High-level arsenite removal from groundwater by zero-valent iron. Chemosphere 2005, 59, 377–386.

131

He, F.; Zhao, D. Y.; Paul, C. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res. 2010, 44, 2360–2370.

132

Henn, K. W.; Waddill, D. W. Utilization of nanoscale zero-valent iron for source remediation–A case study. Remediation 2006, 57–77.

133

Dubey, S. P.; Dwivedi, A. D.; Kim, I. -C.; Sillanpaa, M.; Kwon, Y. -N.; Lee, C. Synthesis of graphene–carbon sphere hybrid aerogel with silver nanoparticles and its catalytic and adsorption applications. Chem. Eng. J. 2014, 244, 160–167.

134

He, J. S.; Siah, T. -S.; Chen, J. P. Performance of an optimized Zr-based nanoparticle-embedded PSF blend hollow fiber membrane in treatment of fluoride contaminated water. Water Res. 2014, 56, 88–97.

135

Xiong, R.; Wang, Y. R.; Zhang, X. X.; Lu, C. H. Facile synthesis of magnetic nanocomposites of cellulose@ultrasmall iron oxide nanoparticles for water treatment. RSC Adv. 2014, 4, 22632–22641.

136

Saharan, P.; Chaudhary, G. R.; Lata, S.; Mehta, S. K.; Mor, S. Ultra fast effective treatment of dyes from water with the synergistic effect of Ni doped ZnO nanoparticles and ultrasonication. Ultrason. Sonochem. 2015, 22, 317–325.

137

Che, H. X.; Yeap, S. P.; Ahmad, A. L.; Lim, J. K. Layer-by-layer assemble of iron oxide magnetic nanoparticles decorated silica colloid for water remediation. Chem. Eng. J. 2014, 243, 68–78.

138

Cao, J.; Li, J. C.; Liu, L.; Xie, A. J.; Li, S. K.; Qiu, L. G.; Yuan, Y. P.; Shen, Y. H. One-pot synthesis of novel Fe3O4/Cu2O/PANI nanocomposites as absorbents in water treatment. J. Mater. Chem. A 2014, 2, 7953.

139

Bhaumik, M.; Choi, H. J.; McCrindle, R. I.; Maity, A. Composite nanofibers prepared from metallic iron nanoparticles and polyaniline: High performance for water treatment applications. J. Colloid Interf. Sci. 2014, 425, 75–82.

140

Liang, S.; Qi, G. G.; Xiao, K.; Sun, J. Y.; Giannelis, E. P.; Huang, X.; Elimelech, M. Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: Implications for organic fouling in membrane bioreactors. J. Memb. Sci. 2014, 463, 94–101.

141

Yu, L.; Peng, X. J.; Ni, F.; Li, J.; Wang, D. S.; Luan, Z. K. Arsenite removal from aqueous solutions by γ-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption. J. Hazard. Mater. 2013, 246–247, 10–17.

142

Weng, X. L.; Lin, S.; Zhong, Y. H.; Chen, Z. L. Chitosan stabilized bimetallic Fe/Ni nanoparticles used to remove mixed contaminants-amoxicillin and Cd (Ⅱ) from aqueous solutions. Chem. Eng. J. 2013, 229, 27–34.

143

Chalasani, R.; Vasudevan, S. Cyclodextrin-functionalized Fe3O4@TiO2: Resuable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies. ACS Nano 2013, 7, 4093–4104.

144

Chai, L. Y.; Wang, Y. Y.; Zhao, N.; Yang, W. C.; You, X. Y. Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water. Water Res. 2013, 47, 4040–4049.

145

Wang, H. T.; Lin, K. -Y.; Jing, B. X.; Krylova, G.; Sigmon, G. E.; McGinn, P.; Zhu, Y. X.; Na, C. Z. Removal of oil droplets from contaminated water using magnetic carbon nanotubes. Water Res. 2013, 47, 4198–4205.

146

Zelmanov, G.; Semiat, R. Boron removal from water and its recovery using iron (Fe+3) oxide/hydroxide-based nanoparticles (NanoFe) and NanoFe-impregnated granular activated carbon as adsorbent. Desalination 2014, 333, 107–117.

147

Das, S. K.; Khan, M. M. R.; Parandhaman, T.; Laffir, F.; Guha, A. K.; Sekaran, G.; Mandal, A. B. Nano-silica fabricated with silver nanoparticles: Antifouling adsorbent for efficient dye removal, effective water disinfection and biofouling control. Nanoscale 2013, 5, 5549–5560.

148

Ayati, A.; Ahmadpour, A.; Bamoharram, F. F.; Tanhaei, B.; Manttari, M.; Sillanpaa, M. A review on catlaytic applications of Au/TiO2 nanoparticles in the removal of water pollutant. Chemosphere 2014, 107, 163–174.

149

Qu, X. L.; Alvarez, P. J. J.; Li, Q. L. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47, 3931–3946.

150

Vadahanambi, S.; Lee, S. -H.; Kim, W. -J.; Oh, I. -K. Arsenic removal from contaminated water using three- dimensional graphene-carbon nanotube-iron oxide nanostructures. Environ. Sci. Technol. 2013, 47, 10510–10517.

151

Zhang, Z. Y.; Kong, J. L. Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. J. Hazard. Mater. 2011, 193, 325–329.

152

Tang, S. C. N.; Lo, I. M. C. Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Res. 2013, 47, 2613–2632.

153

Yang, Z.; Yan, H.; Yang, H.; Li, H. B.; Li, A. M.; Cheng, R. S. Flocculation performance and mechanism of graphene oxide for removal of various contaminants from water. Water Res. 2013, 47, 3037–3046.

154

Kassaee, M. Z.; Motamedi, E.; Mikhak, A.; Rahnemaie, R. Nitrate removal from water using iron nanoparticles produced by arc discharge vs. reduction. Chem. Eng. J. 2011, 166, 490–495.

155

Ali, I. New generation adsorbents for water treatment. Chem. Rev. 2012, 112, 5073–5091.

156

Hua, M.; Zhang, S. J.; Pan, B. C.; Zhang, W. M.; Lv, L.; Zhang, Q. X. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 2012, 211–212, 317–331.

157

Auffan, M.; Achouak, W.; Rose, J.; Roncato, M. A.; Chaneac, C.; Waite, D. T.; Masion, A.; Woicik, J. C.; Wiesner, M. R.; Bottero, J. Y. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ. Sci. Technol. 2008, 42, 6730–6735.

158

Brunet, L.; Lyon, D. Y.; Hotze, E. M.; Alvarez, P. J. J.; Wiesner, M. R. Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ. Sci. Technol. 2009, 43, 4355–4360.

159

Li, Q. L.; Mahendra, S.; Lyon, D. Y.; Brunet, L.; Liga, M. V.; Li, D.; Alvarez, P. J. J. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res. 2008, 42, 4591–4602.

160

Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramirez, J. T.; Yacaman, M. J. The bactericidal effect of silver nanoparticles. Nanotechnol. 2005, 16, 2346–2353.

161

Larimer, C.; Ostrowski, N.; Speakman, J.; Nettleship, I. The segregation of silver nanoparticles in low-cost ceramic water filters. Mater. Charact. 2010, 61, 408–412.

162

Dankovich, T. A.; Gray, D. G. Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ. Sci. Technol. 2011, 45, 1992–1998.

163

Liga, M. V.; Bryant, E. L.; Colvin, V. L.; Li, Q. L. Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. Water Res. 2011, 45, 535–544.

164

Apalangya, V.; Rangari, V.; Tiimob, B.; Jeelani, S.; Samuel, T. Development of antimicrobial water filtration hybrid material from bio source calcium carbonate and silver nanoparticles. Appl. Surf. Sci. 2014, 295, 108–114.

165

Saifuddin, N.; Nian, C. Y.; Zhan, L. W.; Ning, K. X. Chitosan-silver nanoparticles composite as point-of-use drinking water filtration system for household to remove pesticides in water. Asian J. Biochem. 2011, 6, 142–159.

166

Auffan, M.; Rose, J.; Bottero, J. Y.; Lowry, G. V.; Jolivet, J. P.; Wiesner, M. R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009, 4, 634–641.

167

Auffan, M.; Rose, J.; Wiesner, M. R.; Bottero, J. Y. Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro. Environ. Pollut. 2009, 157, 1127–1133.

168

Kang, S.; Mauter, M. S.; Elimelech, M. Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ. Sci. Technol. 2008, 42, 7528–7534.

169

Lowry, G. V.; Gregory, K. B.; Apte, S. C.; Lead, J. R. Transformations of nanomaterials in the environment. Environ. Sci. Technol. 2012, 46, 6893–6899.

170

Boverhof, D. R.; David, R. M. Nanomaterial characterization: Considerations and needs for hazard assessment and safety evaluation. Anal. Bioanal. Chem. 2010, 396, 953–961.

171

Blaise, C.; Gagne, F.; Ferard, J. F.; Eullaffroy, P. Ecotoxicity of selected nano-materials to aquatic organisms. Environ. Toxicol. 2008, 23, 591–598.

172

Lanone, S.; Rogerieux, F.; Geys, J.; Dupont, A.; Maillot-Marechal, E.; Boczkowski, J.; Lacroix, G.; Hoet, P. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part. Fibre Toxicol. 2009, 6, 14.

173

Zhang, W.; Rittmann, B.; Chen, Y. S. Size effects on adsorption of hematite nanoparticles on E. coli cells. Environ. Sci. Technol. 2011, 45, 2172–2178.

174

Yin, L. Y.; Cheng, Y. W.; Espinasse, B.; Colman, B. P.; Auffan, M.; Wiesner, M. R.; Rose, J.; Liu, J.; Bernhardt, E. S. More than the ions: The effects of silver nanopartilces on Lolium multiflorum. Environ. Sci. Technol. 2011, 45, 2360–2367.

175

Franklin, N. M.; Rogers, N. J.; Apte, S. C.; Batley, G. E.; Gadd, G. E.; Casey, P. S. Nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environ. Sci. Technol. 2007, 41, 8484–8490.

176

Hildebrand, H.; Kuhnel, D.; Potthoff, A.; Mackenzie, K.; Springer, A.; Schirmer, K. Evaluating the cytotoxicity of palladium/magnetite nano-catalysts intended for wastewater treatment. Environ. Pollut. 2010, 158, 65–73.

177

Schultz, A. G.; Boyle, D.; Chamot, D.; Ong, K. J.; Wilkinson, K. J.; McGeer, J. C.; Sunahara, G.; Goss, G. G. Aquatic toxicity of manufactured nanomaterials: Challenges and recommendations for future toxicity testing. Environ. Chem. 2014, 11, 207–226.

178

Ma, H. B.; Williams, P. L.; Diamond, S. A. Ecotoxicity of manufactured ZnO nanoparticles - A review. Environ. Pollut. 2013, 172, 76–85.

179

Peulen, T. -O.; Wilkinson, K. J. Diffusion of nanoparticles in a biofilm. Environ. Sci. Technol. 2011, 45, 3367–3373.

180

Reidy, B.; Haase, A.; Luch, A.; Dawson, K. A.; Lynch, I. Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Mater. 2013, 6, 2295–2350.

181

Praetorius, A.; Scheringer, M.; Hungerbuhler, K. Development of environmental fate models for engineered nanoparticles - A case study of TiO2 nanoparticles in the Rhine River. Environ. Sci. Technol. 2012, 46, 6705–6713.

182

Lowry, G. V.; Espinasse, B. P.; Badireddy, A. R.; Richardson, C. J.; Reinsch, B. C.; Bryant, L. D.; Bone, A. J.; Deonarine, A.; Chae, S.; Therezien, M. et al. Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ. Sci. Technol. 2012, 46, 7027–7036.

183

Westerhoff, P.; Nowack, B. Searching for global descriptors of engineered nanomaterial fate and transport in the environment. Acc. Chem. Res. 2013, 46, 844–853.

184

Gavankar, S.; Suh, S.; Keller, A. F. Life cycle assessment at nanoscale: Review and recommendations. Int. J. Life Cycle Assess. 2012, 17, 295–303.

185

Cornelis, G.; Hund-Rinke, K.; Kuhlbusch, T.; van den Brink, N.; Nickel, C. Fate and bioavailability of engineered nanoparticles in soils: A review. Crit. Rev. Env. Sci. Technol. 2014, 44, 2720–2764.

186

Chalew, T. E. A.; Ajmani, G. S.; Huang, H. O.; Schwab, K. J. Evaluating nanoparticle breakthrough during drinking water treatment. Environ. Health Persp. 2013, 121, 1161–1166.

187

Zhu, Y. Q.; Fan, L.; Yang, B.; Du, J. Z. Multifunctional homopolymer vesicles for facile immobilization of gold nanoparticles and effective water remediation. ACS Nano 2014, 8, 5022–5031.

188

Westerhoff, P.; Song, G. X.; Hristovski, K.; Kiser, M. A. Occurrence and removal of titanium at full scale wastewater treatment plants: Implications for TiO2 nanomaterials. J. Environ. Monit. 2011, 13, 1195.

189

Rottman, J.; Sierra-Alvarez, R.; Shadman, F. Real-time monitoring of nanoparticle retention in porous media. Environ. Chem. Lett. 2013, 11, 71–76.

190

Rahman, T.; Millwater, H.; Shipley, H. J. Modeling and sensitivity analysis on the transport of aluminum oxide nanoparticles in saturated sand: Effects of ionic strength, flow rate, and nanoparticle concentration. Sci. Total Environ. 2014, 499, 402–412.

191

Wu, N.; Wyart, Y.; Liu, Y.; Rose, J.; Moulin, P. An overview of solid/liquid separation methods and size fractionation techniques for engineered nanomaterials in aquatic environment. Environ. Technol. Rev. 2013, 2, 55–70.

192

Westerhoff, P. K.; Kiser, M. A.; Hristovski, K. Nanomaterial removal and transformation during biological wastewater treatment. Environ. Eng. Sci. 2013, 30, 109–117.

193

Ferreira da Silva, B.; Perez, S.; Gardinalli, P.; Singhal, R. K.; Mozeto, A. A.; Barcelo, D. Analytical chemistry of metallic nanoparticles in natural environments. TrAC-Trend. Anal. Chem. 2011, 30, 528–540.

194

von der Kammer, F.; Ferguson, P. L.; Holden, P. A.; Masion, A.; Rogers, K. R.; Klaine, S. J.; Koelmans, A. A.; Horne, N.; Unrine, J. M. Analysis of engineered nanomaterials in complex matrices (environment and biota): General considerations and conceptual case studies. Environ. Toxicol. Chem. 2012, 31, 32–49.

195

Weinberg, H.; Galyean, A.; Leopold, M. Evaluating engineered nanoparticles in natural waters. TrAC-Trend. Anal. Chem. 2011, 30, 72–83.

196

Dreyer, D. R.; Miller, D. J.; Freeman, B. D.; Paul, D. R.; Bielawski, C. W. Elucidating the structure of poly(dopamine). Langmuir 2012, 28, 6428–6435.

197

Kasemset, S.; Lee, A.; Miller, D. J.; Freeman, B. D.; Sharma, M. M. Effect of polydopamine deposition conditions on fouling resistance, physical properties, and permeation properties of reverse osmosis membranes in oil/water separation. J. Memb. Sci. 2013, 425, 208–216.

198

McCloskey, B. D.; Park, H. B.; Ju, H.; Rowe, B. W.; Miller, D. J.; Chun, B. J.; Kin, K.; Freeman, B. D. Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes. Polymer 2010, 51, 3472–3485.

199

Miller, D. J.; Araujo, P. A.; Correia, P. B.; Ramsey, M. M.; Kruithof, J. C.; van Loosdrecht, M. C. M.; Freeman, B. D.; Paul, D. R.; Whiteley, M.; Vrouwenvelder, J. S. Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control. Water Res. 2012, 46, 3737–3753.

200

McCloskey, B. D.; Park, H. B.; Ju, H.; Rowe, B. W.; Miller, D. J.; Freeman, B. D. A bioinspired fouling-resistant surface modification for water purification membranes. J. Memb. Sci. 2012, 413–414, 82–90.

201

Tang, Z. H.; Qiu, C. Q.; McCutcheon, J. R.; Yoon, K.; Ma, H. Y.; Fang, D. F.; Lee, E.; Kopp, C.; Hsiao, B. S.; Chu, B. Design and fabrication of electrospun polyethersulfone nanofibrous scaffold for high-flux nanofiltration membranes. J. Polym. Sci. B Polym. Phys. 2009, 47, 2288–2300.

202

Bui, N. -N.; McCutcheon, J. R. Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis. Environ. Sci. Technol. 2013, 47, 1761–1769.

203

Huang, L.; Bui, N. -N.; Manickam, S. S.; McCutcheon, J. R. Controlling electrospun nanofiber morphology and mechanical properties using humidity. J Polym. Sci. B Polym. Phys. 2011, 49, 1734–1744.

204

Jackson, E. A.; Hillmyer, M. A. Nanoporous membranes derived from block copolymers: From drug delivery to water filtration. ACS Nano 2010, 4, 3548–3553.

205

Phillip, W. A.; O'Neill, B.; Rodwogin, M.; Hillmyer, M. A.; Cussler, E. L. Self-assembled block copolymer thin films as water filtration membranes. ACS App. Mater. Int. 2010, 2, 847–853.

206

Yeo, J.; Kim, S. Y.; Kim, S.; Ryu, D. Y.; Kim, T. -H.; Park, M. J. Mechanically and structurally robust sulfonated block copolymer membranes for water purification applications. Nanotechnol. 2012, 23, 245703.

207

Wandera, D.; Himstedt, H. H.; Marroquin, M.; Wickramasinghe, S. R.; Husson, S. M. Modification of ultrafiltration membranes with block copolymer nanolayers for produced water treatment: The roles of polymer chain density and polymerization time on performance. J. Memb. Sci. 2012, 403, 250–260.

208

Karunakaran, M.; Nunes, S. P.; Qiu, X. Y.; Yu, H. Z.; Peinemann, K. -V. Isoporous PS-b-PEO ultrafiltration membranes via self-assembly and water-induced phase separation. J. Memb. Sci. 2014, 453, 471–477.

209

Marques, D. S.; Vainio, U.; Chaparro, N. M.; Carlo, V. M.; Behzad, A. R.; Pitera, J. W.; Peinemann, K. -V.; Nunes, S. P. Self-assembly in casting solutions of block copolymer membranes. Soft Mat. 2013, 9, 5557–5564.

210

Nunes, S. P.; Behzad, A. R.; Peinemann, K. -V. Self-assembled block copolymer membranes: From basic research to large scale manufacturing. J. Mater. Res. 2013, 28, 2661–2665.

211

Dorin, R. M.; Phillip, W. A.; Sai, H.; Werner, J.; Elimelech, M.; Wiesner, U. Designing block copolymer architectures for targeted membrane performance. Polymer 2014, 55, 347–353.

212

Phillip, W. A.; Dorin, R. M.; Werner, J.; Hoek, E. M. V.; Wiesner, U.; Elimelech, M. Tuning structure and properties of graded triblock terpolymer-based mesoporous and hybrid films. Nano Lett. 2011, 11, 2892–2900.

213

Gu, Y. B.; Dorin, R. M.; Wiesner, U. Asymmetric organic-inorganic hybrid membrane formation via block copolymer-nanoparticle co-assembly. Nano Lett. 2013, 13, 5323–5328.

214

Hoheisel, T. N.; Hur, K.; Wiesner, U. B. Block copolymer-nanoparticle hybrid self-assembly. Prog. Polym. Sci. 2015, 40, 3–32.

215

Warren, S. C.; Messina, L. C.; Slaughter, L. S.; Kamperman, M.; Zhou, Q.; Gruner, S. M.; DiSalvo, F. J.; Wiesner, U. Ordered mesoporous materials from metal nanoparticle-block copolymer self-assembly. Science 2008, 320, 1748–1752.

216

Bokare, A. D.; Chikate, R. C.; Rode, C. V.; Paknikar, K. M. Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Appl. Catal. B 2008, 79, 270–278.

217

Fang, Z. Q.; Qiu, X. H.; Chen, J. H.; Qiu, X. Q. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: Influencing factors, kinetics, and mechanism. J. Hazard. Mater. 2011, 185, 958–969.

218

Cao, J.; Xu, R. F.; Tang, H.; Tang, S. S.; Cao, M. H. Synthesis of monodispersed CMC-stabilized Fe-Cu bimetal nanoparticles for in situ reductive dechlorination of 1, 2, 4-trichlorobenzene. Sci. Total Environ. 2011, 409, 2336–2341.

219

Choi, K.; Lee, W. Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu(Ⅱ). J. Hazard. Mater. 2012, 211–, 146–153.

220

Chun, C. L.; Baer, D. R.; Matson, D. W.; Amonette, J. E.; Penn, R. L. Characterization and reactivity of iron nanoparticles prepared with added Cu, Pd, and Ni. Environ. Sci. Technol. 2010, 44, 5079–5085.

221

Joo, S. H.; Feitz, A. J.; Waite, T. D. Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environ. Sci. Technol. 2004, 38, 2242–2247.

222

Keenan, C. R.; Sedlak, D. L. Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol. 2008, 42, 6936–6941.

223

Lee, C.; Keenan, C. R.; Sedlak, D. L. Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen. Environ. Sci. Technol. 2008, 42, 4921–4926.

224

Hooshyar, Z.; Bardajee, G. R.; Ghayeb, Y. Sonication enhanced removal of nickel and cobalt ions from polluted water using an iron based sorbent. J. Chem. 2012, 2013, 786954.

225

Hug, S. J.; Leupin, O. Iron-catalyzed oxidation of arsenic(Ⅲ) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ. Sci. Technol. 2003, 37, 2734–2742.

226

Liu, T. Z.; Tsang, D. C. W.; Lo, I. M. C. Chromium(VI) reduction kinetics by zero-valent iron in moderately hard water with humic acid: Iron dissolution and humic acid adsorption. Environ. Sci. Technol. 2008, 42, 2092–2098.

227

Armon, R.; Weltch-Cohen, G.; Bettane, P. Disinfection of Bacillus spp. spores in drinking water by TiO2 photocatalysis as a model for Bacillus anthracis. Water Sci. Technol. Water Supp. 2004, 4, 7–14.

228

Antoniou, M. G.; Nicolaou, P. A.; Shoemaker, J. A.; de la Cruz, A. A.; Dionysiou, D. D. Impact of the morphological properties of thin TiO2 photocatalytic films on the detoxification of water contaminated with the cyanotoxin, microcystin-LR. Appl. Catal. B Env. 2009, 91, 165–173.

229

Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y.; Li, J. H. P25-graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380–386.

230

Jain, S.; Yamgar, R.; Jayaram, R. V. Photolytic and photocatalytic degradation of atrazine in the presence of activated carbon. Chem. Eng. J. 2009, 148, 342–347.

231

Žabar, R.; Komel, T.; Fabjan, J.; Kralj, M. B.; Trebše, P. Photocatalytic degradation with immobilised TiO2 of three selected neonicotinoid insecticides: Imidacloprid, thiamethoxam and clothianidin. Chemosphere 2012, 89, 293–301.

232

Tu, W. G.; Zhou, Y.; Zou, Z. G. Versatile graphene-promoting photocatalytic performance of semiconductors: Basic principles, synthesis, solar energy conversion, and environmental applications. Adv. Func. Mater. 2013, 23, 4996–5008.

233

Bae, E. Y.; Choi, W. Y. Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environ. Sci. Technol. 2003, 37, 147–152.

234

Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555–1614.

235

Su, R.; Tiruvalam, R.; He, Q.; Dimitratos, N.; Kesavan, L.; Hammond, C.; Lopez-Sanchez, J. A.; Bechstein, R.; Kiely, C. J.; Hutchings, G. J. et al. Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au-Pd nanoparticles. ACS Nano 2012, 6, 6284–6292.

236

Zhang, W. J.; Zhou, C. J.; Zhou, W. C.; Lei, A. H.; Zhang, Q. L.; Wan, Q.; Zou, B. S. Fast and considerable adsorption of methylene blue dye onto graphene oxide. Bull. Environ. Contam. Toxicol. 2011, 87, 86–90.

237

Ion, A. C.; Alpatova, A.; Ion, I.; Culetu, A. Study on phenol adsorption from aqueous solutions on exfoliated graphitic nanoplatelets. Mater. Sci. Eng. B. 2011, 176, 588–595.

238

Lu, K.; Zhao, G. X.; Wang, X. K. A brief review of graphene-based material synthesis and its application in environmental pollution management. Chinese Sci. Bull. 2012, 57, 1223–1234.

239

Zhao, G. X.; Li, J. X.; Ren, X. M.; Chen, C. L.; Wang, X. K. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol. 2011, 45, 10454–10462.

240

Sun, Y. B.; Wang, Q.; Chen, C. L.; Tan, X. L.; Wang, X. K. Interaction between Eu(Ⅲ) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ. Sci. Technol. 2012, 46, 6020–6027.

241

Hu, M.; Mi, B. X. Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction. J. Membr. Sci. 2014, 469, 80–87.

242

O'Hern, S. C.; Boutilier, M. S. H.; Idrobo, J. C.; Song, Y.; Kong, J.; Laoui, T.; Atieh, M.; Karnik, R. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 2014, 14, 1234–1241.

243

Yeh, C. -N.; Raidongia, K.; Shao, J. J.; Yang, Q. -H.; Huang, J. X. On the origin of the stability of graphene oxide membranes in water. Nature Chem. 2015, 7, 166–170.

244

Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded permeation of water through Helium-leak-tight graphen-based membranes. Science 2012, 335, 442–444.

245

Greenlee, L. F.; Hooker, S. A. Development of stabilized zero valent iron nanoparticles. Desalin. Water Treat. 2012, 37, 114–121.

246

Greenlee, L. F.; Torrey, J. D.; Amaro, R. L.; Shaw, J. M. Kinetics of zero valent iron nanoparticle oxidation in oxygenated water. Environ. Sci. Technol. 2012, 46, 12913–12920.

247

Bhattacharyya, D. Functionalized membranes and environmental applications. Clean Technol. Envr. 2007, 9, 81–83.

248

Pendergast, M. M. Separation performance and interfacial properties of nanocomposite reverse osmosis membranes. Desalination 2013, 308, 180–185.

249

Pendergast, M. M.; Hoek, E. M. V. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 2011, 4, 1946–1971.

250

Han, Y.; Xu, Z.; Gao, C. Ultrathin graphene nanofiltratrion membrane for water purification. Adv. Funct. Mater. 2013, 23, 3693–3700.

251

Bedford, N. M.; Pelaez, M.; Han, C. S.; Dionysiou, D. D.; Steckl, A. J. Photocatalytic cellulosic electrospun fibers for the degradation of potent cyanobacteria toxin microcystin-LR. J. Mater. Chem. 2012, 22, 12666–12674.

252

Byun, S.; Davies, S. H.; Alpatova, A. L.; Corneal, L. M.; Baumann, M. J.; Tarabara, V. V.; Masten, S. J. Mn oxide coated catalytic membranes for a hybrid ozonation-membrane filtration: Comparison of Ti, Fe and Mn oxide coated membranes for water quality. Water Res. 2011, 45, 163–170.

253

Choi, J. H.; Jegal, J.; Kim, W. N. Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J. Memb. Sci. 2006, 284, 406–415.

254

Dotzauer, D. A.; Bhattacharjee, S.; Wen, Y.; Bruening, M. L. Nanoparticle-containing membranes for the catalytic reduction of nitroaromatic compounds. Langmuir 2009, 25, 1865–1871.

255

Gui, M. H.; Smuleac, V.; Ormsbee, L. E.; Sedlak, D. L.; Bhattacharyya, D. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water. J. Nanopart. Res. 2012, 14, 861.

256

Lee, H. S.; Im, S. J.; Kim, J. H.; Kim, H. J.; Kim, J. P.; Min, B. R. Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination 2008, 219, 48–56.

257

Lind, M. L.; Suk, D. E.; Nguyen, T. V.; Hoek, E. M. V. Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance. Environ. Sci. Technol. 2010, 44, 8230–8235.

258

Liang, S.; Xiao, K.; Mo, Y. H.; Huang, X. A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. J. Memb. Sci. 2012, 394, 184–192.

259

Smuleac, V.; Varma, R.; Sikdar, S.; Bhattacharyya, D. Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J. Memb. Sci. 2011, 379, 131–137.

260

Taurozzi, J. S.; Arul, H.; Bosak, V. Z.; Burban, A. F.; Voice, T. C.; Bruening, M. L.; Tarabara, V. V. Effect of filler incorporation route on the properties of polysulfone-silver nanocomposite membranes of different porosities. J. Memb. Sci. 2008, 325, 58–68.

261

Xu, J.; Dozier, A.; Bhattacharyya, D. Synthesis of nanoscale bimetallic particles in polyelectrolyte membrane matrix for reductive transformation of halogenated organic compounds. J. Nanopart. Res. 2005, 7, 449–467.

262

Yang, Y. N.; Zhang, H. X.; Wang, P.; Zheng, Q. Z.; Li, J. The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. J. Memb. Sci. 2007, 288, 231–238.

263

Zhu, C. Q.; Li, H.; Zeng, X. C.; Wang, E. G.; Meng, S. Quantized water transport: Ideal desalination through graphyne-4 membrane. Sci. Rep. 2013, 3, 3163.

264

Guillot, B. A reappraisal of what we have learnt during three decades of computer simulations on water. J. Mol. Liq. 2002, 101, 219–260.

265

Yoo, S.; Zeng, X. C.; Xantheas, S. S. On the phase diagram of water with density functional theory potentials: The melting temperature of ice Ih with the Perdew-Burke-Ernzerhof and Becke-Lee-Yang-Parr functionals. J. Chem. Phys. 2009, 130, 221102.

Nano Research
Pages 3085-3110
Cite this article:
Meng S, Greenlee LF, Shen YR, et al. Basic science of water: Challenges and current status towards a molecular picture*. Nano Research, 2015, 8(10): 3085-3110. https://doi.org/10.1007/s12274-015-0822-y

862

Views

28

Crossref

N/A

Web of Science

29

Scopus

5

CSCD

Altmetrics

Received: 01 March 2015
Revised: 23 May 2015
Accepted: 25 May 2015
Published: 19 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return