Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Since opening sizable bandgaps in bilayer graphene (BLG) was proven possible, BLG has attracted considerable attention as a promising high-mobility candidate material for many electronic and optoelectronic applications. However, the bandgaps observed in the transport experiments reported in the literature are far smaller than both the theoretical predictions and the bandgaps extracted from optical measurements. In this study, we investigate the factors preventing the formation of large bandgaps and demonstrate that a ~200-meV transport bandgap can be opened in BLG by scaling the gate dielectric and employing a ribbon channel to suppress the percolative transport. This is the largest transport bandgap that has been achieved in BLG to date.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
Min, H.; Sahu, B. R.; Banerjee, S. K.; Macdonald, A. H. Ab initio theory of gate induced gaps in graphene bilayers. Phys. Rev. B 2007, 75, 155115.
Mccann, E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 2006, 74, 161403.
Castro, E. V.; Novoselov, K. S.; Morozov, S. V.; Peres, N. M. R.; dos Santos, J. M. B. L.; Nilsson, J.; Guinea, F.; Geim, A. K.; Neto, A. H. C. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 2007, 99, 216802.
Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science. 2006, 313, 951-954.
Zhang, Y. B.; Tang, T. -T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459, 820-823.
Zhang, L. M.; Li, Z. Q.; Basov, D. N.; Fogler, M. M.; Hao, Z.; Martin, M. C. Determination of the electronic structure of bilayer graphene from infrared spectroscopy results. Phys. Rev. B 2008, 78, 235408.
Xia, F. N.; Farmer, D. B.; Lin, Y. -M.; Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 2010, 10, 715-718.
Yan, J.; Fuhrer, M. S. Charge transport in dual gated bilayer graphene with Corbino geometry. Nano Lett. 2010, 10, 4521-4525.
Taychatanapat, T.; Jarillo-Herrero, P. Electronic transport in dual-gated bilayer graphene at large displacement fields. Phys. Rev. Lett. 2010, 105, 166601.
Russo, S.; Craciun, M. F.; Yamamoto, M.; Tarucha, S.; Morpurgo, A, F. Double-gated graphene-based devices. New J. Phys. 2009, 11, 095018.
Craciun, M. F.; Russo, S.; Yamamoto, M.; Tarucha, S. Tuneable electronic properties in graphene. Nano Today 2011, 6, 42-60.
Shioya, H.; Yamamoto, M. Russo, S.; Craciun, M. F.; Tarucha, S. Gate tunable non-linear currents in bilayer graphene diodes. Appl. Phys. Lett. 2012, 100, 033113.
Lin, J. H.; Fang, W. J.; Zhou, W.; Lupini, A. R.; Idrobo, J. C.; Kong, J.; Pennycook, S. J.; Pantelides, S. T. AC/AB stacking boundaries in bilayer graphene. Nano Lett. 2013, 13, 3262-3268.
Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Elsevier, B.V. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51-87.
Kim, K.; Coh, S.; Tan, L. Z.; Regan, W.; Yuk, J. M.; Chatterjee, E.; Crommie, M. F.; Cohen, M. L.; Louie, S. G.; Zettl, A. Raman spectroscopy study of rotated double-layer graphene: Misorientation-angle dependence of electronic structure. Phys. Rev. Lett. 2012, 108, 246103.
Alden, J. S.; Tsen, A. W.; Huang, P. Y.; Hovden, R.; Brown, L.; Park, J.; Muller, D. A.; McEuen, P. L. Strain solitons and topological defects in bilayer graphene. Proc. Natl. Acad. Sci. USA 2013, 110, 11256-11260.
San-Jose, P.; Gorbachev, R. V.; Geim, A. K.; Novoselov, K. S.; Guinea, F. Stacking boundaries and transport in bilayer graphene. Nano Lett. 2014, 14, 2052-2057.
Zou, K.; Zhang, F.; Clapp, C.; MacDonald, A. H.; Zhu, J. Transport studies of dual-gated ABC and ABA trilayer graphene: Band gap opening and band structure tuning in very large perpendicular electric field. Nano Lett. 2013, 13, 369-373.
Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; Von Klitzing, K.; Yacoby, A. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 2008, 4, 144-148.
Sui, Y.; Low, T.; Lundstrom, M.; Appenzeller, J. Signatures of disorder in the minimum conductivity of graphene. Nano Lett. 2011, 11, 1319-1322.
Deshpande, A.; Bao, W.; Zhao, Z.; Lau, C. N.; LeRoy, B. J. Mapping the Dirac point in gated bilayer graphene. Appl. Phys. Lett. 2009, 95, 243502.
Yu, W. J.; Duan, X. F. Tunable transport gap in narrow bilayer graphene nanoribbons. Sci. Rep. 2013, 3, 1248.
Szafranek, B. N.; Fiori, G.; Schall, D.; Neumaier, D.; Kurz, H. Current saturation and voltage gain in bilayer graphene field effect transistors. Nano Lett. 2012, 12, 1324-1328.