AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanostructure and mechanical properties of the osteocyte lacunar-canalicular network-associated bone matrix revealed by quantitative nanomechanical mapping

Shuai Zhang1Fiona Linnea Bach-Gansmo1,2Dan Xia1Flemming Besenbacher1Henrik Birkedal1,2( )Mingdong Dong1( )
The Interdisciplinary Nanoscience CenterAarhus UniversityAarhus C8000Denmark
Department of ChemistryAarhus UniversityAarhus C8000Denmark
Show Author Information

Graphical Abstract

Abstract

Osteocytes are the main bone cells embedded in the bone matrix where they form a large surface-area network called the lacunar-canalicular network (LCN), interconnecting their resident spaces with the lacunae by the canaliculi. Increasing evidence points toward osteocytes playing a pivotal role in maintaining bone quality. On the one hand, osteocytes transmit mechanical strain and microenvironmental signals through the LCN to regulate the activity of osteoblasts and osteoclasts; on the other hand, osteocytes are suggested to be able to remodel the LCN-associated bone matrix. However, due to the challenges involved in the assessment and characterization of the LCN-associated bone matrix, little is known about its structure and the corresponding mechanical properties. In this work, we used quantitative nanomechanical mapping, backscattered electron imaging, and nanoindentation to characterize the LCN-associated bone matrix. The results show that the techniques can be used to probe the LCN-associated bone matrix. Nanoindentation and quantitative mechanical mapping reveal spatially inhomogeneous mechanical properties of the bone matrix associated with the osteocyte lacunae and canaliculi. The obtained nano-topography and corresponding nano-mechanical maps reveal altered mechanical properties in the immediate vicinity of the osteocyte lacunae and canaliculi, which cannot be explained solely by the topographic change.

Electronic Supplementary Material

Download File(s)
nr-8-10-3250_ESM.pdf (1.4 MB)

References

1

Bonewald, L. F. The amazing osteocyte. J. Bone Miner. Res. 2011, 26, 229-238.

2

Teti, A.; Zallone, A. Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone 2009, 44, 11-16.

3

Vatsa, A.; Breuls, R. G.; Semeins, C. M.; Salmon, P. L.; Smit, T. H.; Klein-Nulend, J. Osteocyte morphology in fibula and calvaria—Is there a role for mechanosensing? Bone 2008, 43, 452-458.

4

Dong, P.; Haupert, S.; Hesse, B.; Langer, M.; Gouttenoire, P. J.; Bousson, V.; Peyrin, F. 3D osteocyte lacunar morphometric properties and distributions in human femoral cortical bone using synchrotron radiation micro-CT images. Bone 2014, 60, 172-185.

5

McCreadie, B. R.; Hollister, S. J.; Schaffler, M. B.; Goldstein, S. A. Osteocyte lacuna size and shape in women with and without osteoporotic fracture. J. Biomech. 2004, 37, 563-572.

6

Varga, P.; Hesse, B.; Langer, M.; Schrof, S.; Männicke, N.; Suhonen, H.; Pacureanu, A.; Pahr, D.; Peyrin, F.; Raum, K. Synchrotron X-ray phase nano-tomography-based analysis of the lacunar-canalicular network morphology and its relation to the strains experienced by osteocytes in situ as predicted by case-specific finite element analysis. Biomech. Model. Mechanobiol. 2014, 14, 267-282.

7

You, L. D.; Weinbaum, S.; Cowin, S. C.; Schaffler, M. B. Ultrastructure of the osteocyte process and its pericellular matrix. Anat. Rec. Part A 2004, 278A, 505-513.

8

Reznikov, N.; Shahar, R.; Weiner, S. Three-dimensional structure of human lamellar bone: The presence of two different materials and new insights into the hierarchical organization. Bone 2014, 59, 93-104.

9

Schneider, P.; Meier, M.; Wepf, R.; Muller, R. Towards quantitative 3D imaging of the osteocyte lacuno-canalicular network. Bone 2010, 47, 848-858.

10

Tang, S. Y.; Herber, R. P.; Ho, S. P.; Alliston, T. Matrix metalloproteinase-13 is required for osteocytic perilacunar remodeling and maintains bone fracture resistance. J. Bone Miner. Res. 2012, 27, 1936-1950.

11

Lane, N. E.; Yao, W.; Balooch, M.; Nalla, R. K.; Balooch, G.; Habelitz, S.; Kinney, J. H.; Bonewald, L. F. Glucocorticoid-treated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo-treated or estrogen-deficient mice. J. Bone Miner. Res. 2006, 21, 466-476.

12

Klein-Nulend, J.; Bakker, A. D.; Bacabac, R. G.; Vatsa, A.; Weinbaum, S. Mechanosensation and transduction in osteocytes. Bone 2013, 54, 182-190.

13

Tatsumi, S.; Ishii, K.; Amizuka, N.; Li, M. Q.; Kobayashi, T.; Kohno, K.; Ito, M.; Takeshita, S.; Ikeda, K. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007, 5, 464-475.

14

Price, C.; Zhou, X. Z.; Li, W.; Wang, L. Y. Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: Direct evidence for load-induced fluid flow. J. Bone Miner. Res. 2011, 26, 277-285.

15

Bonewald, L. F.; Johnson, M. L. Osteocytes, mechanosensing and Wnt signaling. Bone 2008, 42, 606-615.

16

Poole, K. E. S.; van Bezooijen, R. L.; Loveridge, N.; Hamersma, H.; Papapoulos, S. E.; Löwik, C. W.; Reeve, J. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 2005, 19, 1842-1844.

17

Busse, B.; Djonic, D.; Milovanovic, P.; Hahn, M.; Püschel, K.; Ritchie, R. O.; Djuric, M.; Amling, M. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell 2010, 9, 1065-1075.

18

Milovanovic, P.; Zimmermann, E. A.; Hahn, M.; Djonic, D.; Püschel, K.; Djuric, M.; Amling, M.; Busse, B. Osteocytic canalicular networks: Morphological implications for altered mechanosensitivity. ACS Nano 2013, 7, 7542-7551.

19

Bélanger, L. F. Osteocytic osteolysis. Calcif. Tissue Res. 1969/70, 4, 1-12.

20

Qing, H.; Ardeshirpour, L.; Divieti Pajevic, P.; Dusevich, V.; Jähn, K.; Kato, S.; Wysolmerski, J.; Bonewald, L. F. Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J. Bone Miner. Res. 2012, 27, 1018-1029.

21

Tazawa, K.; Hoshi, K.; Kawamoto, S.; Tanaka, M.; Ejiri, S.; Ozawa, H. Osteocytic osteolysis observed in rats to which parathyroid hormone was continuously administered. J. Bone Miner. Metab. 2004, 22, 524-529.

22

Dierolf, M.; Menzel, A.; Thibault, P.; Schneider, P.; Kewish, C. M.; Wepf, R.; Bunk, O.; Pfeiffer, F. Ptychographic X-ray computed tomography at the nanoscale. Nature 2010, 467, 436-439.

23

Langer, M.; Pacureanu, A.; Suhonen, H.; Grimal, Q.; Cloetens, P.; Peyrin, F. X-Ray Phase nanotomography resolves the 3D human bone ultrastructure. PLoS One 2012, 7, e35691.

24

Skedros, J. G.; Bloebaum, R. D.; Bachus, K. N.; Boyce, T. M. The meaning of graylevels in backscattered electron images of bone. J. Biomed. Mater. Res. 1993, 27, 47-56.

25

Sutton-Smith, P.; Beard, H.; Fazzalari, N. Quantitative backscattered electron imaging of bone in proximal femur fragility fracture and medical illness. J. Microsc. 2008, 229, 60-66.

26

Reznikov, N.; Almany-Magal, R.; Shahar, R.; Weiner, S. Three-dimensional imaging of collagen fibril organization in rat circumferential lamellar bone using a dual beam electron microscope reveals ordered and disordered sub-lamellar structures. Bone 2013, 52, 676-683.

27

Reznikov, N.; Shahar, R.; Weiner, S. Bone hierarchical structure in three dimensions. Acta Biomater. 2014, 10, 3815-3826.

28

Fratzl, P.; Weinkamer, R. Nature's hierarchical materials. Prog. Mater. Sci. 2007, 52, 1263-1334.

29

Weiner, S.; Wagner, H. D. The material bone: Structure-mechanical function relations. Annu. Rev. Mater. Sci. 1998, 28, 271-298.

30

Müller, D. J.; Dufrene, Y. F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechno. 2008, 3, 261-269.

31

Thompson, J. B.; Kindt, J. H.; Drake, B.; Hansma, H. G.; Morse, D. E.; Hansma, P. K. Bone indentation recovery time correlates with bond reforming time. Nature 2001, 414, 773-776.

32

Fantner, G. E.; Hassenkam, T.; Kindt, J. H.; Weaver, J. C.; Birkedal, H.; Pechenik, L.; Cutroni, J. A.; Cidade, G. A. G.; Stucky, G. D.; Morse, D. E. et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat. Mater. 2005, 4, 612-616.

33

Dufrene, Y. F.; Martinez-Martin, D.; Medalsy, I.; Alsteens, D.; Müller, D. J. Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat. Methods 2013, 10, 847-854.

34

Dong, M. D.; Husale, S.; Sahin, O. Determination of protein structural flexibility by microsecond force spectroscopy. Nat. Nanotechnol. 2009, 4, 514-517.

35

Wegmann, S.; Medalsy, I. D.; Mandelkow, E.; Müller, D. J. The fuzzy coat of pathological human Tau fibrils is a two-layered polyelectrolyte brush. Prog. Natl. Acad. Sci. USA 2013, 110, E313-E321.

36

Zhang, S.; Andreasen, M.; Nielsen, J. T.; Liu, L.; Nielsen, E. H.; Song, J.; Ji, G.; Sun, F.; Skrydstrup, T.; Besenbacher, F. et al. Coexistence of ribbon and helical fibrils originating from hIAPP20-29 revealed by quantitative nanomechanical atomic force microscopy. Prog. Natl. Acad. Sci. USA 2013, 110, 2798-2803.

37

Adamcik, J.; Lara, C.; Usov, I.; Jeong, J. S.; Ruggeri, F. S.; Dietler, G.; Lashuel, H. A.; Hamley, I. W.; Mezzenga, R. Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method. Nanoscale 2012, 4, 4426-4429.

38

Medalsy, I.; Hensen, U.; Muller, D. J. Imaging and quantifying chemical and physical properties of native proteins at molecular resolution by force-volume AFM. Angew. Chem., Int. Ed. 2011, 50, 12103-12108.

39

Adamcik, J.; Berquand, A.; Mezzenga, R. Single-step direct measurement of amyloid fibrils stiffness by peak force quantitative nanomechanical atomic force microscopy. Appl. Phys. Lett. 2011, 98, 193701.

40

Thomsen, J. S.; Christensen, L.; Vegger, J.; Nyengaard, J.; Brüel, A. Loss of bone strength is dependent on skeletal site in disuse osteoporosis in rats. Calcif. Tissue Int. 2012, 90, 294-306.

41

Bach-Gansmo, F.; Irvine, S.; Brüel, A.; Thomsen, J.; Birkedal, H. Calcified cartilage islands in rat cortical bone. Calcif. Tissue Int. 2013, 92, 330-338.

42

Roschger, P.; Fratzl, P.; Eschberger, J.; Klaushofer, K. Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 1998, 23, 319-326.

43

Gupta, H. S.; Stachewicz, U.; Wagermaier, W.; Roschger, P.; Wagner, H. D.; Fratzl, P. Mechanical modulation at the lamellar level in osteonal bone. J. Mater. Res. 2006, 21, 1913-1921.

44

Brüel, A.; Olsen, J.; Birkedal, H.; Risager, M.; Andreassen, T. T.; Raffalt, A. C.; Andersen, J. E. T.; Thomsen, J. S. Strontium ranelate is incorporated into the fracture callus, but does not influence the mechanical strength of healing rat fractures. Calcif. Tissue Int. 2011, 88, 142-152.

45

Oliver, W. C.; Pharr, G. M. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564-1583.

46

Rho, J. Y.; Tsui, T. Y.; Pharr, G. M. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 1997, 18, 1325-1330.

47

Hutter, J. L.; Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 1993, 64, 1868-1873.

48

Carpentier, V. T.; Wong, J. Q.; Yeap, Y.; Gan, C.; Sutton-Smith, P.; Badiei, A.; Fazzalari, N. L.; Kuliwaba, J. S. Increased proportion of hypermineralized osteocyte lacunae in osteoporotic and osteoarthritic human trabecular bone: Implications for bone remodeling. Bone 2012, 50, 688-694.

49

Seto, J.; Gupta, H. S.; Zaslansky, P.; Wagner, H. D.; Fratzl, P. Tough lessons from bone: Extreme mechanical anisotropy at the mesoscale. Adv. Funct. Mater. 2008, 18, 1905-1911.

50

Fratzl, P.; Gupta, H. S.; Fischer, F. D.; Kolednik, O. Hindered crack propagation in materials with periodically varying Young's modulus—Lessons from biological materials. Adv. Mater. 2007, 19, 2657-2661.

51

Zhai, H. L.; Jiang, W. G.; Tao, J. H.; Lin, S. Y.; Chu, X.; Xu, X. B.; Tang, R. K. Self-assembled organic-inorganic hybrid elastic crystal via biomimetic mineralization. Adv. Mater. 2010, 22, 3729-3734.

52

Rho, J. -Y.; Tsui, T. Y.; Pharr, G. M. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 1997, 18, 1325-1330.

53

Cappella, B.; Dietler, G. Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 1999, 34, 5-104.

54

Pittenger, B.; Slade, A. Performing quantitative nanomechanical AFM measurements on live cells. Microsc. Today 2013, 21, 12-17.

55

Li, Y. L.; Zhang, S.; Guo, L. J.; Dong, M. D.; Liu, B.; Mamdouh, W. Collagen coated tantalum substrate for cell proliferation. Colloids Surf. B 2012, 95, 10-15.

56

Gupta, H. S.; Seto, J.; Wagermaier, W.; Zaslansky, P.; Boesecke, P.; Fratzl, P. Cooperative deformation of mineral and collagen in bone at the nanoscale. Prog. Natl. Acad. Sci. USA 2006, 103, 17741-17746.

57

Liu, Y.; Luo, D.; Kou, X. -X.; Wang, X. -D.; Tay, F. R.; Sha, Y. -L.; Gan, Y. -H.; Zhou, Y. -H. Hierarchical intrafibrillar nanocarbonated apatite assembly improves the nanomechanics and cytocompatibility of mineralized collagen. Adv. Funct. Mater. 2012, 23, 1404-1411.

Nano Research
Pages 3250-3260
Cite this article:
Zhang S, Bach-Gansmo FL, Xia D, et al. Nanostructure and mechanical properties of the osteocyte lacunar-canalicular network-associated bone matrix revealed by quantitative nanomechanical mapping. Nano Research, 2015, 8(10): 3250-3260. https://doi.org/10.1007/s12274-015-0825-8

736

Views

14

Crossref

N/A

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 25 November 2013
Revised: 27 May 2015
Accepted: 30 May 2015
Published: 25 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return