AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

PtxCuy nanocrystals with hexa-pod morphology and their electrocatalytic performances towards oxygen reduction reaction

Yujing Li1,2( )Fanxin Quan2Enbo Zhu3Lin Chen2Yu Huang3,4Changfeng Chen1,2
State Key Laboratory of Heavy OilChina University of PetroleumBeijing102249China
Department of Materials Science and EngineeringCollege of ScienceChina University of PetroleumBeijing102249China
Department of Materials Science and EngineeringUniversity of California-Los AngelesLos AngelesCalifornia90095USA
California NanoSystems InstituteUniversity of California-Los AngelesLos AngelesCalifornia90095USA
Show Author Information

Graphical Abstract

Abstract

Bimetallic PtxCuy nanocrystals (NCs) with well-defined hexa-pod morphology were synthesized via a wet chemistry approach. The as-synthesized convex NCs with dimensions of around 20 nm show exposed low-index (111) facets on the seeds and various high-index facets on the pods. The growth mechanism involved preferred growth along the < 100 > crystallographic direction on cuboctahedral seeds. The synthetic protocol could be applied to the synthesis of PtxCuy NCs with various Cu/Pt ratios. The electro-catalytic activity of the hexa-pod PtxCuy NCs supported on carbon black towards the oxygen reduction reaction (ORR) was studied. The hexa-pod PtCu2/C catalysts exhibit the highest specific activity (3.7 mA/cmPt2) and mass activity (2.4 A/mgPt) reported to date for PtxCuy. Comparison with other morphological forms of PtxCuy indicated that the enhanced activity originated from morphological factors. The existence of high-index facets as well as abundant edges and steps on the pods could reasonably explain the enhanced catalytic activity. The hexa-pod PtxCuy/C catalysts also show high morphological stability and activity after accelerated durability tests. The as-synthesized hexa-pod PtxCuy NCs have high potential as cathode electro-catalysts for proton exchange membrane fuel cells.

Electronic Supplementary Material

Download File(s)
nr-8-10-3342_ESM.pdf (3 MB)

References

1

Gasteiger, H. A.; Markovic, N. M. Just a dream-or future reality? Science 2009, 324, 48–49.

2

Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc. 1999, 146, 3750–3756.

3

Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal., B 2005, 56, 9–35.

4

Huang, X. Q.; Zhao, Z. P.; Chen, Y.; Chiu, C. -Y.; Ruan, L. Y.; Liu, Y.; Li, M. F.; Duan, X. F.; Huang, Y. High density catalytic hot spots in ultrafine wavy nanowires. Nano Lett. 2014, 14, 3887–3894.

5

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

6

Chen, Y. M.; Yang, F.; Dai, Y.; Wang, W. Q.; Chen, S. L. Ni@Pt core-shell nanoparticles: Synthesis, structural and electrochemical properties. J. Phys. Chem. C 2008, 112, 1645–1649.

7

Wakabayashi, N.; Takeichi, M.; Uchida, H.; Watanabe, M. Temperature dependence of oxygen reduction activity at Pt-Fe, Pt-Co, and Pt-Ni alloy electrodes. J. Phys. Chem. B 2005, 109, 5836–5841.

8

Huang, Q. H.; Yang, H.; Tang, Y. W.; Lu, T. H.; Akins, D. L. Carbon-supported Pt-Co alloy nanoparticles for oxygen reduction reaction. Electrochem. Commun. 2006, 8, 1220–1224.

9

Kang, Y. J.; Murray, C. B. Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). J. Am. Chem. Soc. 2010, 132, 7568–7569.

10

Li, J. Y.; Wang, G. X.; Wang, J.; Miao, S.; Wei, M. M.; Yang, F.; Yu, L.; Bao, X. H. Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction. Nano Res. 2014, 7, 1519–1527.

11

Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Norskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

12

Norskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. USA 2011, 108, 937–943.

13

Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Norskov, J. K. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem., Int. Ed. 2006, 45, 2897–2901.

14

Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

15

Sha, Y.; Yu, T. H.; Merinov, B. V.; Shirvanian, P.; Goddard, W. A., Ⅲ. Mechanism for Oxygen Reduction Reaction on Pt3Ni Alloy Fuel Cell Cathode. J. Phys. Chem. C 2012, 116, 21334–21342.

16

Zhang, Y. H.; Duan, Z. Y.; Xiao, C.; Wang, G. F. Density functional theory calculation of platinum surface segregation energy in Pt3Ni (111) surface doped with a third transition metal. Surf. Sci. 2011, 605, 1577–1582.

17

Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.

18

Min, M. K.; Cho, J. H.; Cho, K. W.; Kim, H. Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim. Acta 2000, 45, 4211–4217.

19

Mukerjee, S.; Srinivasan, S. Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J. Electroanal. Chem. 1993, 357, 201–224.

20

Zheng, F. L.; Wong, W. -T.; Yung, K. -F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.

21

Xiong, L.; Kannan, A. M.; Manthiram, A. Pt-M (M = Fe, Co, Ni and Cu) electrocatalysts synthesized by an aqueous route for proton exchange membrane fuel cells. Electrochem. Commun. 2002, 4, 898–903.

22

Xiong, L.; Manthiram, A. Effect of atomic ordering on the catalytic activity of carbon supported PtM (M = Fe, Co, Ni, and Cu) alloys for oxygen reduction in PEMFCs. J. Electrochem. Soc. 2005, 152, A697–A703.

23

He, T.; Kreidler, E.; Xiong, L. F.; Ding, E. R. Combinatorial screening and nano-synthesis of platinum binary alloys for oxygen electroreduction. J. Power Sources 2007, 165, 87–91.

24

Tseng, C. -J.; Lo, S. -T.; Lo, S. -C.; Chu, P. P. Characterization of Pt-Cu binary catalysts for oxygen reduction for fuel cell applications. Mater. Chem. Phys. 2006, 100, 385–390.

25

Liu, Z. C.; Koh, S.; Yu, C. F.; Strasser, P. Synthesis, dealloying, and ORR electrocatalysis of PDDA-stabilized Cu-rich Pt alloy nanoparticles. J. Electrochem. Soc. 2007, 154, B1192–B1199.

26

Srivastava, R.; Mani, P.; Hahn, N.; Strasser, P. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparticles. Angew. Chem., Int. Ed. 2007, 46, 8988–8991.

27

Oezaslan, M.; Hasche, F.; Strasser, P. PtCu3, PtCu and Pt3Cu alloy nanoparticle electrocatalysts for oxygen reduction reaction in alkaline and acidic media. J. Electrochem. Soc. 2012, 159, B444–B454.

28

Stephens, I. E. L.; Bondarenko, A. S.; Perez-Alonso, F. J.; Calle-Vallejo, F.; Bech, L.; Johansson, T. P.; Jepsen, A. K.; Frydendal, R.; Knudsen, B. P.; Rossmeisl, J. et al. Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying. J. Am. Chem. Soc. 2011, 133, 5485–5491.

29

Dutta, I.; Carpenter, M. K.; Balogh, M. P.; Ziegelbauer, J. M.; Moylan, T. E.; Atwan, M. H.; Irish, N. P. Electrochemical and structural study of a chemically dealloyed PtCu oxygen reduction catalyst. J. Phys. Chem. C 2010, 114, 16309–16320.

30

Mani, P.; Srivastava, R.; Strasser, P. Dealloyed binary PtM3 (M = Cu, Co, Ni) and ternary PtNi3M (M = Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells. J. Power Sources 2011, 196, 666–673.

31

Ge, X. B.; Chen, L. Y.; Kang, J. L.; Fujita, T.; Hirata, A.; Zhang, W.; Jiang, J. H.; Chen, M. W. A core-shell nanoporous Pt-Cu catalyst with tunable composition and high catalytic activity. Adv. Funct. Mater. 2013, 23, 4156–4162.

32

Wu, J. B.; Qi, L.; You, H. J.; Gross, A.; Li, J.; Yang, H. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J. Am. Chem. Soc. 2012, 134, 11880–11883.

33

Wu, J. B.; Zhang, J. L.; Peng, Z. M.; Yang, S. C.; Wagner, F. T.; Yang, H. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 2010, 132, 4984–4985.

34

Li, H. Y.; Wang, J. S.; Liu, M.; Wang, H.; Su, P. L.; Wu, J. S.; Li, J. A nanoporous oxide interlayer makes a better Pt catalyst on a metallic substrate: Nanoflowers on a nanotube bed. Nano Res. 2014, 7, 1007–1017.

35

Si, W. F.; Li, J.; Li, H. Q.; Li, S. S.; Yin, J.; Xu, H.; Guo, X. W.; Zhang, T.; Song, Y. J. Light-controlled synthesis of uniform platinum nanodendrites with markedly enhanced electrocatalytic activity. Nano Res. 2013, 6, 720–725.

36

Narayanan, R.; El-Sayed, M. A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 2004, 4, 1343–1348.

37

Choi, S. -I.; Xie, S. F.; Shao, M. H.; Odell, J. H.; Lu, N.; Peng, H. -C.; Protsailo, L.; Guerrero, S.; Park, J.; Xia, X. H. et al. Synthesis and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mgPt for the oxygen reduction reaction. Nano Lett. 2013, 13, 3420–3425.

38

Cui, C. H.; Gan, L.; Li, H. -H.; Yu, S. -H.; Heggen, M.; Strasser, P. Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 2012, 12, 5885–5889.

39

Zhu, H. Y.; Zhang, S.; Guo, S. J.; Su, D.; Sun, S. H. Synthetic control of FePtM nanorods (M = Cu, Ni) to enhance the oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 7130–7133.

40

Wang, D. S.; Peng, Q.; Li, Y. D. Nanocrystalline intermetallics and alloys. Nano Res. 2010, 3, 574–580.

41

Bromberg, L.; Fayette, M.; Martens, B.; Luo, Z. P.; Wang, Y.; Xu, D.; Zhang, J.; Fang, J.; Dimitrov, N. Catalytic performance comparison of shape-dependent nanocrystals and oriented ultrathin films of Pt4Cu alloy in the formic acid oxidation process. Electrocatalysis 2013, 4, 24–36.

42

Zhang, J.; Yang, H. Z.; Martens, B.; Luo, Z. P.; Xu, D.; Wang, Y. X.; Zou, S. Z.; Fang, J. Y. Pt-Cu nanoctahedra: Synthesis and comparative study with nanocubes on their electrochemical catalytic performance. Chem. Sci. 2012, 3, 3302–3306.

43

Saleem, F.; Zhang, Z. C.; Xu, B.; Xu, X. B.; He, P. L.; Wang, X. Ultrathin Pt-Cu nanosheets and nanocones. J. Am. Chem. Soc. 2013, 135, 18304–18307.

44

Tian, N.; Zhou, Z. -Y.; Sun, S. -G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

45

Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shapecontrolled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2008, 48, 60–103.

46

Marayama, J.; Abe, I. Application of conventional activated carbon loaded with dispersed Pt to PEFC catalyst layer. Electrochim. Acta 2003, 48, 1443–1450.

Nano Research
Pages 3342-3352
Cite this article:
Li Y, Quan F, Zhu E, et al. PtxCuy nanocrystals with hexa-pod morphology and their electrocatalytic performances towards oxygen reduction reaction. Nano Research, 2015, 8(10): 3342-3352. https://doi.org/10.1007/s12274-015-0834-7

654

Views

15

Crossref

N/A

Web of Science

14

Scopus

6

CSCD

Altmetrics

Received: 27 April 2015
Revised: 07 June 2015
Accepted: 08 June 2015
Published: 30 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return