Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

An efficient and surface-benign purification scheme for colloidal nanocrystals based on quantitative assessment

Yu YangJiongzhao LiLong LinXiaogang Peng()
Center for Chemistry of Novel & High-Performance MaterialsDepartment of ChemistryZhejiang UniversityHangzhou310027China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

General application of "greener methods" to the synthesis of monodisperse colloidal nanocrystals introduces impurities, including metal carboxylate precursors, non-volatile solvents, free ligands, and non-nanocrystalline side products. These impurities seriously diminish the solution processability and potential applications of colloidal nanocrystals. A protocol was established for evaluating purification schemes. The results revealed that commonly applied purification schemes and their variants do not exhibit a high level of performance and may degrade the ligand surface coverage. A new scheme involving chloroform–acetonitrile precipitation quantitatively removed all impurities from colloidal solutions of CdSe and CdS nanocrystals coated with a variety of carboxylate ligands. The new scheme was benign to the surface structure of nanocrystal-ligands complexes and resulted in each nanocrystal bearing a close-packed monolayer of carboxylate ligands.

Electronic Supplementary Material

Download File(s)
nr-8-10-3353_ESM.pdf (937.3 KB)

References

1

Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.

2

Weller, H. Colloidal semiconductor Q-particles: Chemistry in the transition region between solid-state and molecules. Angew. Chem., Int. Ed. 1993, 32, 41–53.

3

Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

4

Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and closepacked nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.

5

Peng, X. G. An essay on synthetic chemistry of colloidal nanocrystals. Nano Res. 2009, 2, 425–447.

6

Bronstein, L. M.; Huang, X. L.; Retrum, J.; Schmucker, A.; Pink, M.; Stein, B. D.; Dragnea, B. Influence of iron oleate complex structure on iron oxide nanoparticle formation. Chem. Mater. 2007, 19, 3624–3632.

7

Moreels, I.; Fritzinger, B.; Martins, J. C.; Hens, Z. Surface chemistry of colloidal PbSe nanocrystals. J. Am. Chem. Soc. 2008, 130, 15081–15086.

8

Ji, X. H.; Copenhaver, D.; Sichmeller, C.; Peng, X. G. Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals. J. Am. Chem. Soc. 2008, 130, 5726–5735.

9

Morris-Cohen, A. J.; Donakowski, M. D.; Knowles, K. E.; Weiss, E. A. The effect of a common purification procedure on the chemical composition of the surfaces of CdSe quantum dots synthesized with trioctylphosphine oxide. J. Phys. Chem. C 2010, 114, 897–906.

10

Fritzinger, B.; Capek, R. K.; Lambert, K.; Martins, J. C.; Hens, Z. Utilizing self-exchange to address the binding of carboxylic acid ligands to CdSe quantum dots. J. Am. Chem. Soc. 2010, 132, 10195–10201.

11

Hassinen, A.; Moreels, I.; Nolf, K. D.; Smet, P. F.; Martins, J. C.; Hens, Z. Short-chain alcohols strip X-type ligands and quench the luminescence of PbSe and CdSe quantum dots, acetonitrile does not. J. Am. Chem. Soc. 2012, 134, 20705–20712.

12

Anderson, N. C.; Hendricks, M. P.; Choi, J. J.; Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metalcarboxylate displacement and binding. J. Am. Chem. Soc. 2013, 135, 18536–18548.

13

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

14

Peng, X. G. Band gap and composition engineering on a nanocrystal (BCEN) in solution. Acc. Chem. Res. 2010, 43, 1387–1395.

15

Coe, S.; Woo, W. K.; Bawendi, M.; Bulovic, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800–803.

16

Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.

17

Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

18

Klimov, V. I., ; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H. -J.; Bawwendi, M. G. Optical gain and stimulated emission in nanocrystal quantum dots. Science 2000, 290, 314–317.

19

Hines, M. A.; Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 1996, 100, 468–471.

20

Peng, X. G.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 1997, 119, 7019–7029.

21

Heine, J. R.; Rodriguez-Viejo, J.; Bawendi, M. G.; Jensen, K. F. Synthesis of CdSe quantum dot–ZnS matrix thin films via electrospray organometallic chemical vapor deposition. J. Cryst. Growth 1998, 195, 564–568.

22

Li, Z.; Ji, Y. J.; Xie, R. G.; Grisham, S. Y.; Peng, X. G. Correlation of CdS nanocrystal formation with elemental sulfur activation and its implication in synthetic development. J. Am. Chem. Soc. 2011, 133, 17248–17256.

23

Nan, W. N.; Niu, Y.; Qin, H. Y.; Cui, F.; Yang, Y.; Lai, R. C.; Lin, W. Z.; Peng, X. G. Crystal structure control of zincblende CdSe/CdS core/shell nanocrystals: Synthesis and structure-dependent optical properties. J. Am. Chem. Soc. 2012, 134, 19685–19693.

24

Wang, C.; Daimon, H.; Lee, Y.; Kim, J.; Sun, S. H. Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J. Am. Chem. Soc. 2007, 129, 6974–6975.

25

Wang, C.; Daimon, H.; Onodera, T.; Koda, T.; Sun, S. H. A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew. Chem., Int. Ed. 2008, 47, 3588–3591.

26

Wang, C.; Hu, Y. J.; Lieber, C. M.; Sun, S. H. Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc. 2008, 130, 8902–8903.

27

Li, P., Peng, Q.; Li, Y. D. Controlled synthesis and selfassembly of highly monodisperse Ag and Ag2S nanocrystals. Chem. —Eur. J. 2011, 17, 941–946.

28

O'Brien, S.; Brus, L.; Murray, C. B. Synthesis of monodisperse nanoparticles of barium titanate: Toward a generalized strategy of oxide nanoparticle synthesis. J. Am. Chem. Soc. 2001, 123, 12085–12086.

29

Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 2001, 123, 12798–12801.

30

Jana, N. R.; Chen, Y. F.; Peng, X. G. Size- and shapecontrolled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater. 2004, 16, 3931–3935.

31

Park, J.; An, K.; Hwang, Y.; Park, J. -G.; Noh, H. -J.; Kim, J. -Y.; Park, J. H.; Hwang, N. -M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.

32

Lin, F. -H.; Chen, W.; Liao, Y. -H.; Doong, R. -A.; Li, Y. D. Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe3O4 (M = Ag, Au, Pt, Pd) heterostructures. Nano Res. 2011, 4, 1223–1232.

33

Pu, C. D.; Zhou, J. H.; Lai, R. C.; Niu, Y.; Nan, W. N.; Peng, X. G. Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS). Nano Res. 2013, 6, 652–670.

34

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

35

Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.

36

Flamee, S.; Cirillo, M.; Abe, S.; Nolf, K. D.; Gomes, R.; Aubert, T.; Hens, Z. Fast, high yield, and high solid loading synthesis of metal selenide nanocrystals. Chem. Mater. 2013, 25, 2476–2483.

37

Yu, W. W.; Peng, X. G. Formation of high-quality CdS and other Ⅱ-Ⅵ semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem., Int. Ed. 2002, 41, 2368–2371.

38

Li, J. J.; Wang, A.; Guo, W. Z.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using airstable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 2003, 125, 12567–12575.

39

Narayanaswamy, A.; Xu, H. F.; Pradhan, N.; Kim, M.; Peng, X. G. Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: Hydrolysis and alcoholysis vs pyrolysis. J. Am. Chem. Soc. 2006, 128, 10310–10319.

40

Qu, L. H.; Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049–2055.

41

Lin, S. L.; Pradhan, N.; Wang, Y. J.; Peng, X. G. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Lett. 2004, 4, 2261–2264.

42

Peng, X. G.; Guan, S. Q.; Chai, X. D.; Jiang, Y. S.; Li, T. J. Preparation and structure of Q-state lead sulfide monolayers in metastable stearic-acid Langmuir-Blodgett-films. J. Phys. Chem. 1992, 96, 3170–3174.

43

Morris-Cohen, A. J.; Frederick, M. T.; Lilly, G. D.; McArthur, E. A.; Weiss, E. A. Organic surfactant-controlled composition of the surfaces of CdSe quantum dots. J. Phys. Chem. Lett. 2010, 1, 1078–1081.

44

Ankireddy, K.; Vunnam, S.; Kellar, J.; Cross, W. Highly conductive short chain carboxylic acid encapsulated silver nanoparticle based inks for direct write technology applications. J. Mater. Chem. C 2013, 1, 572–579.

45

Hens, Z.; Martins, J. C. A solution NMR toolbox for characterizing the surface chemistry of colloidal nanocrystals. Chem. Mater. 2013, 25, 1211–1221.

46

Kim, W.; Lim, S. J.; Jung, S.; Shin, S. K. Binary aminephosphine passivation of surface traps on CdSe nanocrystals. J. Phys. Chem. C 2010, 114, 1539–1546.

Nano Research
Pages 3353-3364
Cite this article:
Yang Y, Li J, Lin L, et al. An efficient and surface-benign purification scheme for colloidal nanocrystals based on quantitative assessment. Nano Research, 2015, 8(10): 3353-3364. https://doi.org/10.1007/s12274-015-0835-6
Metrics & Citations  
Article History
Copyright
Return