AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries

Ning Zhang1Yongchang Liu1Yanying Lu1Xiaopeng Han1Fangyi Cheng1Jun Chen1,2( )
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of ChemistryNankai UniversityTianjin300071China
Collaborative Innovation Center of Chemical Science and EngineeringNankai UniversityTianjin300071China
Show Author Information

Graphical Abstract

Abstract

An aerosol spray pyrolysis technique is used to synthesize a spherical nano-Sb@C composite. Instrumental analyses reveal that the micro-nanostructured composite with an optimized Sb content of 68.8 wt% is composed of ultra-small Sb nanoparticles (10 nm) uniformly embedded within a spherical porous C matrix (denoted as 10-Sb@C). The content and size of Sb can be controlled by altering the concentration of the precursor. As an anode material of sodium-ion batteries, 10-Sb@C provides a discharge capacity of 435 mAh·g–1 in the second cycle and 385 mAh·g–1 (a capacity retention of 88.5%) after 500 cycles at 100 mAh·g–1. In particular, the electrode exhibits an excellent rate capability (355, 324, and 270 mAh·g–1 at 1, 000, 2, 000, and 4, 000 mA·g–1, respectively). Such a high-rate performance for the Sb-C anode has rarely been reported. The remarkable electrochemical behavior of 10-Sb@C is attributed to the synergetic effects of ultra-small Sb nanoparticles with an uniform distribution and a porous C framework, which can effectively alleviate the stress associated with a large volume change and suppress the agglomeration of the pulverized nanoparticles during prolonged charge-discharge cycling.

Electronic Supplementary Material

Download File(s)
nr-8-10-3384_ESM.pdf (5.6 MB)

References

1

Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

2

Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887.

3

Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.

4

Ji, L. W.; Gu, M.; Shao, Y. Y.; Li, X. L.; Engelhard, M. H.; Arey, B. W.; Wang, W.; Nie, Z. M.; Xiao, J.; Wang, C. M. et al. Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv. Mater. 2014, 26, 2901–2908.

5

He, M.; Kravchyk, K.; Walter, M.; Kovalenko, M. V. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: Nano versus Bulk. Nano Lett. 2014, 14, 1255–1262.

6

Li, W. J.; Chou, S. -L.; Wang, J. -Z.; Kim, J. H.; Liu, H. -K.; Dou, S. -X. Sn4+xP3@amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability. Adv. Mater. 2014, 26, 4037– 4042.

7

Li, L.; Seng, K. H.; Li, D.; Xia, Y. Y.; Liu, H. K.; Guo, Z. P. SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries. Nano Res. 2014, 7, 1466–1476.

8

You, Y.; Yu, X. Q.; Yin, Y. X.; Nam, K. -W.; Guo, Y. -G. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 2015, 8, 117–128.

9

Ge, P.; Fouletier, M. Electrochemical intercalation of sodium in graphite. SolidState Ionics 1988, 28–30, 1172–1175.

10

Ge, M. Y.; Lu, Y. H.; Ercius, P.; Rong, J. P.; Fang, X.; Mecklenburg, M.; Zhou, C. W. Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon. Nano Lett. 2014, 14, 261–268.

11

Hu, Z.; Wang, L. X.; Zhang, K.; Wang, J. B.; Cheng, F. Y.; Tao, Z. L.; Chen, J. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem. Int. Ed. 2014, 53, 12794–12798.

12

Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 2011, 21, 3859–3867.

13

Xie, X. Q.; Ao, Z. M.; Su, D. W.; Zhang, J. Q.; Wang, G. X. MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: The role of the two-dimensional heterointerface. Adv. Funct. Mater. 2015, 25, 1393–1403.

14

Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W. C.; Cheng, F. Y.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014, 7, 199–208.

15

Yu, D. Y. W.; Prikhodchenko, P. V.; Mason, C. W.; Batabyal, S. K.; Gun, J.; Sladkevich, S.; Medvedev, A. G.; Lev, O. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 2013, 4, 2922.

16

Zhu, H. L.; Jia, Z.; Chen, Y. C.; Weadock, N.; Wan, J. Y.; Vaaland, O.; Han, X. G.; Li, T.; Hu, L. B. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett. 2013, 13, 3093– 3100.

17

Farbod, B.; Cui, K.; Kalisvaart, W. P.; Kupsta, M.; Zahiri, B.; Kohandehghan, A.; Lotfabad, E. M.; Li, Z.; Luber, E. J.; Mitlin, D. Anodes for sodium ion batteries based on tin– germanium–antimony alloys. ACS Nano 2014, 8, 4415–4429.

18

Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism. J. Am. Chem. Soc. 2012, 134, 20805–20811.

19

Baggetto, L.; Carroll, K. J.; Hah, H. -Y.; Johnson, C. E.; Mullins, D. R.; Unocic, R. R.; Johnson, J. A.; Meng, Y. S.; Veith, G. M. Probing the mechanism of sodium ion insertion into copper antimony Cu2Sb anodes. J. Phys. Chem. C2014, 118, 7856–7864.

20

Hu, M. J.; Jiang, Y. Z.; Sun, W. P.; Wang, H. T.; Jin, C. H.; Yan, M. Reversible conversion-alloying of Sb2O3 as a high- capacity, high-rate, and durable anode for sodium ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 19449–19455.

21

Kim, Y.; Ha, K. -H.; Oh, S. M.; Lee, K. T. High-capacity anode materials for sodium-ion batteries. Chem. Eur. J. 2014, 20, 11980–11992.

22

Zhang, K.; Hu Z.; Liu X.; Tao Z. L.; Chen J. FeSe2 microspheres as a high-performance anode material for Na- ion batteries. Adv. Mater. 2015, 27, 3305–3309.

23

Sun, Q.; Ren, Q. -Q.; Li, H.; Fu, Z. W. High capacity Sb2O4 thin film electrodes for rechargeable sodium battery. Electrochem. Commun. 2011, 13, 1462–1464.

24

Chen, J.; Cheng, F. Y. Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res. 2009, 42, 713–723.

25

Zhu, C. B.; Mu, X. K.; van Aken, P. A.; Yu, Y.; Maier, J. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 2014, 53, 2152–2156.

26

Pei, L. K.; Jin, Q.; Zhu, Z. Q.; Liang, J.; Chen, J. Ice- templated preparation and sodium storage ofultrasmall SnO2 nanoparticles embedded in three-dimensional graphene. Nano Res. 2015, 8, 184–192.

27

Zhang, N.; Zhao, Q.; Han, X. P.; Yang, J. G.; Chen, J. Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries. Nanoscale 2014, 6, 2827–2832.

28

Ko, Y. N.; Kang, Y. C. Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na-ion battery anode materials. Chem. Commun. 2014, 50, 12322–12324.

29

Zhu, Z. Q.; Wang, S. W.; Du, J.; Jin, Q.; Zhang, T. R.; Cheng, F. Y.; Chen, J. Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Lett. 2014, 14, 153–157.

30

Zhou, X. L.; Zhong, Y. R.; Yang, M.; Hu, M.; Wei, J. P.; Zhou, Z. Sb nanoparticles decorated N-rich carbon nanosheets as anode materials for sodium ion batteries with superior rate capability and long cycling stability. Chem. Commun. 2014, 50, 12888–12891.

31

Zhu, Y. J.; Han, X. G.; Xu, Y. H.; Liu, Y. H.; Zheng, S. Y.; Xu, K.; Hu, L. B.; Wang, C. S. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano 2013, 7, 6378–6386.

32

Wu, L.; Hu, X. H.; Qian, J. F.; Pei, F.; Wu, F. Y.; Mao, R. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy Environ. Sci. 2014, 7, 323–328.

33

Jung, D. S.; Hwang, T. H.; Park, S. B.; Choi, J. W. Spray drying method for large-scale and high-performance siliconnegative electrodes in Li-ion batteries. NanoLett. 2013, 13, 2092–2097.

34

Liu, Y. C.; Zhang, N.; Jiao, L. F.; Tao, Z. L.; Chen, J. Ultrasmall Sn nanoparticles embedded in carbon as high- performance anode for sodium-ion batteries. Adv. Funct. Mater. 2015, 25, 214–220.

35

Jung, D. S.; Hwang, T. H.; Park, S. B.; Choi, J. W. Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries. Nano Lett. 2013, 13, 2092–2097.

36

Zhang, N.; Han, X. P.; Liu, Y. C.; Hu, X. F.; Zhao, Q.; Chen, J. 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries. Adv. Energy Mater. 2015, 5, 1401123.

37

Lu, Y. Y.; Zhang, N.; Zhao, Q.; Liang J.; Chen, J. Micro- nanostructured CuO/C spheres as high performance anode materials for Na-ion batteries. Nanoscale 2015, 7, 2770–2776.

38

Qian, J. F.; Chen, Y.; Wu, L.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. 2012, 48, 7070–7072.

39

Fan, L.; Zhang, J. J.; Cui, J. H.; Zhu, Y. C.; Liang, J. W.; Wang, L. L.; Qian, Y. T. Electrochemical performance of Rod-like Sb-C composite as anodes for Li-ion and Na-ion batteries. J. Mater. Chem. A2015, 3, 3276–3280.

Nano Research
Pages 3384-3393
Cite this article:
Zhang N, Liu Y, Lu Y, et al. Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Research, 2015, 8(10): 3384-3393. https://doi.org/10.1007/s12274-015-0838-3

699

Views

161

Crossref

N/A

Web of Science

169

Scopus

21

CSCD

Altmetrics

Received: 13 April 2015
Revised: 06 June 2015
Accepted: 11 June 2015
Published: 08 September 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return