AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A single Au nanoparticle anchored inside the porous shell of periodic mesoporous organosilica hollow spheres

Ying Yang1( )Wen Zhang1Ying Zhang1Anmin Zheng2Hui Sun1Xinsong Li1Suyan Liu1Pengfang Zhang1Xin Zhang1( )
State Key Laboratory of Heavy Oil ProcessingChina University of PetroleumChangpingBeijing102249China
State Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsWuhan Center for Magnetic ResonanceWuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhan430071China
Show Author Information

Graphical Abstract

Abstract

An ideal metal catalyst requires easy contact with reaction reagents, a large number of exposed active sites, and high stability against leaching or particle agglomeration. Anchoring a metal core inside a porous shell, though scarcely reported, may combine these advantages owing to the integration of the conventional supported metal arrangement into a core@void@shell architecture. However, achieving this is extremely difficult owing to the weak core—shell affinity. Herein, we report, for the first time, an approach to overcome this challenge by increasing the core-shell interaction. In this regard, we synthesized a novel Au@void@periodic mesoporous organosilica (PMO) architecture in which a single Au core is firmly anchored inside the porous shell of the hollow PMO sphere. The non-covalent interactions between the poly(vinylpyrrolidone) (PVP) groups of functionalized Au and ethane moieties of PMO facilitate the movement of the Au core towards the porous shell during the selective alkaline etching of Au@SiO2@PMO. Shell-anchored Au cores are superior to the suspended cores in the conventional Au@void@PMO in terms of contact with reagents and exposure of active sites, and hence show higher catalytic efficiency for 4-nitrophenol reduction. The methodology demonstrated here provides a new insight for the fabrication of versatile multifunctional nanostructures with cores anchored inside hollow shells.

Electronic Supplementary Material

Download File(s)
nr-8-10-3404_ESM.pdf (4.1 MB)

References

1

Li, G. D.; Tang, Z. Y. Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: Recent progress and perspective. Nanoscale 2014, 6, 3995–4011.

2

Pérez-Lorenzo, M.; Vaz, B.; Salgueiriño, V.; Correa-Duarte, M. A. Hollow-shelled nanoreactors endowed with high catalytic activity. Chem. Eur. J. 2013, 19, 12196–12211.

3

Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W.; Xing, X. R.; Lu, G. Q. Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commun. 2011, 47, 12578–12591.

4

Park, J. C.; Song, H. Metal@silica yolk-shell nanostructures as versatile bifunctional nanocatalysts. Nano Res. 2011, 4, 33–49.

5

Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/ nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987–4019.

6

Ko, Y. N.; Kang, Y. C.; Park, S. B. Continuous one-pot synthesis of sandwich structured core-shell particles and transformation to yolk-shell particles. Chem. Commun. 2013, 49, 3884–3886.

7

Arnal, P. M.; Comotti, M.; Schth, F. High-temperature- stable catalysts by hollow sphere encapsulation. Angew. Chem. Int. Ed. 2006, 45, 8224–8227.

8

Liu, R.; Mahurin, S. M.; Li, C.; Unocic, R. R.; Idrobo, J. C.; Gao, H. J.; Pennycook, S. J.; Dai, S. Dopamine as a carbon source: The controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew. Chem. Int. Ed. 2011, 50, 6799–6802.

9

Yang, T. Y.; Liu, J.; Zheng, Y.; Monteiro, M. J.; Qiao, S. Z. Facile fabrication of core-shell-structured Ag@carbon and mesoporous yolk-shell-structured Ag@carbon@silica by an extended Stöber method. Chem. Eur. J. 2013, 19, 6942–6945.

10

Dong, K.; Liu, Z.; Ren, J. S. A general and eco-friendly self-etching route to prepare highly active and stable Au@metal silicate yolk-shell nanoreactors for catalytic reduction of 4-Nitrophenol. CrystEngComm 2013, 15, 6329– 6334.

11

Han, J.; Wang, M. G.; Chen, R.; Han, N.; Guo, R. Beyond yolk-shell nanostructure: A single Au nanoparticle encapsulated in the porous shell of polymer hollow spheres with remarkably improved catalytic efficiency and recyclability. Chem. Commun. 2014, 50, 8295–8298.

12

Li, B. X.; Gu, T.; Ming, T.; Wang, J. X.; Wang, P.; Wang, J. F.; Yu, J. C. (Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light. ACS Nano 2014, 8, 8152–8162.

13

Liu, J.; Yang, H. Q.; Kleitz, F.; Chen, Z. G.; Yang, T. Y.; Strounina, E.; Lu, G. Q.; Qiao, S. Z. Yolk-shell hybrid materials with a periodic mesoporous organosilica shell: Ideal nanoreactors for selective alcohol oxidation. Adv. Funct. Mater. 2012, 22, 591–599.

14

Gallo, J. M. R.; Pastore, H. O.; Schuchardt, U. Silylation of[Nb]-MCM-41 as an efficient tool to improve epoxidation activity and selectivity. J. Catal. 2006, 243, 57–63.

15

Wahab, M. A.; Kim, Ⅱ.; Ha, C. -S. Hybrid periodic mesoporous organosilica materials prepared from 1, 2- Bis(triethoxysilyl)ethane and (3-Cyanopropyl)triethoxysilane. Micropor. Mesopor. Mater. 2004, 69, 19–27.

16

Jin, Y.; Wang, P. J.; Yin, D. H.; Liu, J. F.; Qiu, H. Y.; Yu, N. Y. Gold nanoparticles stabilized in a novel periodic mesoporous organosilica of SBA-15 for styrene epoxidation. Micropor. Mesopor. Mater. 2008, 111, 569–576.

17

Zhuang, T. Y.; Shi, J. Y.; Ma, B. C.; Wang, W. Chiral norbornane-bridged periodic mesoporous organosilicas. J. Mater. Chem. 2010, 20, 6026–6029.

18

Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 1997, 97, 2373–2419.

19

Robles-Dutenhefner, P. A.; Rocha, K. A. D.; Sousa, E. M. B.; Gusevskaya, E. V. Cobalt-catalyzed oxidation of terpenes: Co-MCM-41 as an efficient shape-selective heterogeneous catalyst for aerobic oxidation of isolongifolene under solvent- free conditions. J. Catal. 2009, 265, 72–79.

20

Lee, I.; Joo, J. B.; Yin, Y. D.; Zaera, F. A yolk@shell nanoarchitecture for Au/TiO2 catalysts. Angew. Chem. Int. Ed. 2011, 50, 10208–10211.

21

Liu, R.; Qu, F. L.; Guo, Y. L.; Yao, N.; Priestley, R. D. Au@carbon yolk-shell nanostructures via one-step core- shell-shell template. Chem. Commun. 2014, 50, 478–480.

22

Han, J.; Chen, R.; Wang, M. G.; Lu, S.; Guo, R. Core-shell to yolk-shell nanostructure transformation by a novel sacrificial template-free strategy. Chem. Commun. 2013, 49, 11566– 11568.

23

Wang, S. N.; Zhang, M. C.; Zhang, W. Q. Yolk-shell catalyst of single Au nanoparticle encapsulated within hollow mesoporous silica microspheres. ACS Catal. 2011, 1, 207–211.

24

Lee, J.; Park, J. C.; Song, H. A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-Nitrophenol. Adv. Mater. 2008, 20, 1523–1528.

Nano Research
Pages 3404-3411
Cite this article:
Yang Y, Zhang W, Zhang Y, et al. A single Au nanoparticle anchored inside the porous shell of periodic mesoporous organosilica hollow spheres. Nano Research, 2015, 8(10): 3404-3411. https://doi.org/10.1007/s12274-015-0840-9

738

Views

36

Crossref

N/A

Web of Science

37

Scopus

4

CSCD

Altmetrics

Received: 01 April 2015
Revised: 26 May 2015
Accepted: 16 June 2015
Published: 11 September 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return