Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
An ideal metal catalyst requires easy contact with reaction reagents, a large number of exposed active sites, and high stability against leaching or particle agglomeration. Anchoring a metal core inside a porous shell, though scarcely reported, may combine these advantages owing to the integration of the conventional supported metal arrangement into a core@void@shell architecture. However, achieving this is extremely difficult owing to the weak core—shell affinity. Herein, we report, for the first time, an approach to overcome this challenge by increasing the core-shell interaction. In this regard, we synthesized a novel Au@void@periodic mesoporous organosilica (PMO) architecture in which a single Au core is firmly anchored inside the porous shell of the hollow PMO sphere. The non-covalent interactions between the poly(vinylpyrrolidone) (PVP) groups of functionalized Au and ethane moieties of PMO facilitate the movement of the Au core towards the porous shell during the selective alkaline etching of Au@SiO2@PMO. Shell-anchored Au cores are superior to the suspended cores in the conventional Au@void@PMO in terms of contact with reagents and exposure of active sites, and hence show higher catalytic efficiency for 4-nitrophenol reduction. The methodology demonstrated here provides a new insight for the fabrication of versatile multifunctional nanostructures with cores anchored inside hollow shells.
Li, G. D.; Tang, Z. Y. Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: Recent progress and perspective. Nanoscale 2014, 6, 3995–4011.
Pérez-Lorenzo, M.; Vaz, B.; Salgueiriño, V.; Correa-Duarte, M. A. Hollow-shelled nanoreactors endowed with high catalytic activity. Chem. Eur. J. 2013, 19, 12196–12211.
Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W.; Xing, X. R.; Lu, G. Q. Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commun. 2011, 47, 12578–12591.
Park, J. C.; Song, H. Metal@silica yolk-shell nanostructures as versatile bifunctional nanocatalysts. Nano Res. 2011, 4, 33–49.
Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/ nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987–4019.
Ko, Y. N.; Kang, Y. C.; Park, S. B. Continuous one-pot synthesis of sandwich structured core-shell particles and transformation to yolk-shell particles. Chem. Commun. 2013, 49, 3884–3886.
Arnal, P. M.; Comotti, M.; Schth, F. High-temperature- stable catalysts by hollow sphere encapsulation. Angew. Chem. Int. Ed. 2006, 45, 8224–8227.
Liu, R.; Mahurin, S. M.; Li, C.; Unocic, R. R.; Idrobo, J. C.; Gao, H. J.; Pennycook, S. J.; Dai, S. Dopamine as a carbon source: The controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew. Chem. Int. Ed. 2011, 50, 6799–6802.
Yang, T. Y.; Liu, J.; Zheng, Y.; Monteiro, M. J.; Qiao, S. Z. Facile fabrication of core-shell-structured Ag@carbon and mesoporous yolk-shell-structured Ag@carbon@silica by an extended Stöber method. Chem. Eur. J. 2013, 19, 6942–6945.
Dong, K.; Liu, Z.; Ren, J. S. A general and eco-friendly self-etching route to prepare highly active and stable Au@metal silicate yolk-shell nanoreactors for catalytic reduction of 4-Nitrophenol. CrystEngComm 2013, 15, 6329– 6334.
Han, J.; Wang, M. G.; Chen, R.; Han, N.; Guo, R. Beyond yolk-shell nanostructure: A single Au nanoparticle encapsulated in the porous shell of polymer hollow spheres with remarkably improved catalytic efficiency and recyclability. Chem. Commun. 2014, 50, 8295–8298.
Li, B. X.; Gu, T.; Ming, T.; Wang, J. X.; Wang, P.; Wang, J. F.; Yu, J. C. (Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light. ACS Nano 2014, 8, 8152–8162.
Liu, J.; Yang, H. Q.; Kleitz, F.; Chen, Z. G.; Yang, T. Y.; Strounina, E.; Lu, G. Q.; Qiao, S. Z. Yolk-shell hybrid materials with a periodic mesoporous organosilica shell: Ideal nanoreactors for selective alcohol oxidation. Adv. Funct. Mater. 2012, 22, 591–599.
Gallo, J. M. R.; Pastore, H. O.; Schuchardt, U. Silylation of[Nb]-MCM-41 as an efficient tool to improve epoxidation activity and selectivity. J. Catal. 2006, 243, 57–63.
Wahab, M. A.; Kim, Ⅱ.; Ha, C. -S. Hybrid periodic mesoporous organosilica materials prepared from 1, 2- Bis(triethoxysilyl)ethane and (3-Cyanopropyl)triethoxysilane. Micropor. Mesopor. Mater. 2004, 69, 19–27.
Jin, Y.; Wang, P. J.; Yin, D. H.; Liu, J. F.; Qiu, H. Y.; Yu, N. Y. Gold nanoparticles stabilized in a novel periodic mesoporous organosilica of SBA-15 for styrene epoxidation. Micropor. Mesopor. Mater. 2008, 111, 569–576.
Zhuang, T. Y.; Shi, J. Y.; Ma, B. C.; Wang, W. Chiral norbornane-bridged periodic mesoporous organosilicas. J. Mater. Chem. 2010, 20, 6026–6029.
Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 1997, 97, 2373–2419.
Robles-Dutenhefner, P. A.; Rocha, K. A. D.; Sousa, E. M. B.; Gusevskaya, E. V. Cobalt-catalyzed oxidation of terpenes: Co-MCM-41 as an efficient shape-selective heterogeneous catalyst for aerobic oxidation of isolongifolene under solvent- free conditions. J. Catal. 2009, 265, 72–79.
Lee, I.; Joo, J. B.; Yin, Y. D.; Zaera, F. A yolk@shell nanoarchitecture for Au/TiO2 catalysts. Angew. Chem. Int. Ed. 2011, 50, 10208–10211.
Liu, R.; Qu, F. L.; Guo, Y. L.; Yao, N.; Priestley, R. D. Au@carbon yolk-shell nanostructures via one-step core- shell-shell template. Chem. Commun. 2014, 50, 478–480.
Han, J.; Chen, R.; Wang, M. G.; Lu, S.; Guo, R. Core-shell to yolk-shell nanostructure transformation by a novel sacrificial template-free strategy. Chem. Commun. 2013, 49, 11566– 11568.
Wang, S. N.; Zhang, M. C.; Zhang, W. Q. Yolk-shell catalyst of single Au nanoparticle encapsulated within hollow mesoporous silica microspheres. ACS Catal. 2011, 1, 207–211.
Lee, J.; Park, J. C.; Song, H. A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-Nitrophenol. Adv. Mater. 2008, 20, 1523–1528.