AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Group 14 element-based non-centrosymmetric quantum spin Hall insulators with large bulk gap

Yandong Ma1( )Liangzhi Kou2Aijun Du2Thomas Heine1( )
Department of Physics and Earth ScienceJacobs University BremenCampus Ring 1Bremen28759Germany
School of ChemistryPhysics and Mechanical EngineeringQueensland University of TechnologyBrisbaneQueensland4001Australia
Show Author Information

Graphical Abstract

Abstract

To date, a number of two-dimensional (2D) topological insulators (TIs) have been realized in Group 14 elemental honeycomb lattices, but all are inversionsymmetric. Here, based on first-principles calculations, we predict a new family of 2D inversion-asymmetric TIs with sizeable bulk gaps from 105 meV to 284 meV, in X2–GeSn (X = H, F, Cl, Br, I) monolayers, making them in principle suitable for room-temperature applications. The nontrivial topological characteristics of inverted band orders are identified in pristine X2–GeSn with X = (F, Cl, Br, I), whereas H2–GeSn undergoes a nontrivial band inversion at 8% lattice expansion. Topologically protected edge states are identified in X2–GeSn with X = (F, Cl, Br, I), as well as in strained H2–GeSn. More importantly, the edges of these systems, which exhibit single-Dirac-cone characteristics located exactly in the middle of their bulk band gaps, are ideal for dissipationless transport. Thus, Group 14 elemental honeycomb lattices provide a fascinating playground for the manipulation of quantum states.

Electronic Supplementary Material

Download File(s)
nr-8-10-3412_ESM.pdf (3.6 MB)

References

1

Moore, J. E. The birth of topological insulators. Nature 2013, 464, 194–198.

2

Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.

3

Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

4

Yan, B. H.; Jansen, M.; Felser, C. A large-energy-gap oxide topological insulator based on the superconductor BaBiO3. Nat. Phys. 2013, 9, 709–711.

5

Kou, L. Z.; Wu, S. C.; Felser, C.; Frauenheim, T.; Chen, C. F.; Yan, B. H. Robust 2D topological insulators in van der Waals heterostructures. ACS Nano 2014, 8, 10448–10454.

6

Ma, Y. D.; Dai, Y.; Guo, M.; Niu, C. W.; Huang, B. B. Intriguing behavior of halogenated two-dimensional tin. J. Phys. Chem. C 2012, 116, 12977–12981.

7

Bernevig, B. A.; Hughes, T. L.; Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 2006, 314, 1757–1761.

8

König, M.; Wiedmann, S.; Brüne, C.; Roth, A.; Buhmann, H.; Molenkamp, L. W.; Qi, X. L.; Zhang, S. C. Quantum spin Hall insulator state in HgTe quantum wells. Science 2007, 318, 766–770.

9

Chen, Y. L.; Analytis, J. G.; Chu, J. H.; Liu, Z. K.; Mo, S. K.; Qi, X. L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science2009, 325, 178–181.

10

Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 398–402.

11

Knez, I.; Du, R. R.; Sullivan, G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys. Rev. Lett. 2011, 107, 136603.

12

Murakami, S. Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling. Phys. Rev. Lett. 2006, 97, 236805.

13

Ma, Y. D.; Dai, Y.; Kou, L. Z.; Frauenheim, T.; Heine, T. Robust two-dimensional topological insulators in methyl- functionalized bismuth, antimony, and lead bilayer films. Nano Lett. 2005, 15, 1083–1089.

14

Song, Z. G.; Liu, C. C.; Yang, J. B.; Han, J. Z.; Ye, M.; Fu, B. T.; Yang, Y. C.; Niu, Q.; Lu, J.; Yao, Y. G. Quantum spin Hall insulators and quantum valley Hall insulators of BiX/ SbX (X = H, F, Cl and Br) monolayers with a record bulk band gap. NPG Asia Mater. 2014, 6, 147.

15

Chuang, F. C.; Yao, L. Z.; Huang, Z. Q.; Liu, Y. T.; Hsu, C. H.; Das, T.; Lin, H.; Bansil, A. Prediction of large-gap two-dimensional topological insulators consisting of bilayers of group Ⅲ elements with Bi. Nano Lett. 2014, 14, 2505–2508.

16

Weng, H. M.; Dai, X.; Fang, Z. Transition-metal pentatelluride ZrTe5 and HfTe5: A paradigm for large-gap quantum spin Hall insulators. Phys. Rev. X 2014, 4, 011002.

17

Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344–1347.

18

Xu, Y.; Yan, B. H.; Zhang, H. J.; Wang, J.; Xu, G.; Tang, P. Z.; Duan, W. H.; Zhang, S. -C. Large-gap quantum spin Hall insulators in tin films. Phys. Rev. Lett. 2013, 111, 136804.

19

Liu, C. -C.; Feng, W. X.; Yao, Y. G. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 2011, 107, 076802.

20

Ma, Y. D.; Dai, Y.; Wei, W.; Huang, B. B.; Whangbo, M. -H. Strain-induced quantum spin Hall effect in methyl-substituted germanane GeCH3. Sci. Rep. 2014, 4, 7297.

21

Ma, Y. D.; Dai, Y.; Niu, C. W.; Huang, B. B. Halogenated two-dimensional germanium: Candidate materials for being of quantum spin Hall state. J. Mater. Chem. 2012, 22, 12587–12591.

22

Liu, C. -C.; Jiang, H.; Yao, Y. G. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 2011, 84, 195430.

23

Si, C.; Liu, J. W.; Xu, Y.; Wu, J.; Gu, B. -L.; Duan, W. H. Functionalized germanene as a prototype of large-gap two-dimensional topological insulators. Phys. Rev. B 2014, 89, 115429.

24

Kane, C. L.; Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801.

25

Chen, Y. L.; Kanou, M.; Liu, Z. K.; Zhang, H. J.; Sobota, J. A.; Leuenberger, D.; Mo, S. K.; Zhou, B.; Yang, S. -L.; Kirchmann, P. S. et al. Discovery of a single topological Dirac fermion in the strong inversion asymmetric compound BiTeCl. Nat. Phys. 2013, 9, 704–708.

26

Bahramy, M. S.; Yang, B. -J.; Arita. R.; Nagaosa, N. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nat. Commun. 2012, 3, 679.

27

Wan, X. G.; Turner, A. M.; Vishwanath, A.; Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 2011, 83, 205101.

28

Brüne, C.; Liu, C. X.; Novik, E. G.; Hankiewicz, E. M.; Buhmann, H.; Chen, Y. L.; Qi, X. L.; Shen, Z. X.; Zhang, S. C.; Molenkamp. L. W. Quantum Hall effect from the topological surface states of strained bulk HgTe. Phys. Rev. Lett. 2011, 106, 126803.

29

Kuroda, K.; Ye, M.; Kimura, A.; Eremeev, S. V.; Krasovskii, E. E.; Chulkov, E. V.; Ueda, Y.; Miyamoto, K.; Okuda, T.; Shimada, K. et al. Experimental realization of a three-dimensional topological insulator phase in ternary chalcogenide TlBiSe2. Phys. Rev. Lett. 2010, 105, 146801.

30

Arguilla, M. Q.; Jiang, S. S.; Chitara, B.; Goldberger, J. E. Synthesis and stability of two-dimensional Ge/Sn graphane alloys. Chem. Mater. 2014, 26, 6941–6946.

31

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

32

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane- wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

33

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

34

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

35

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

36

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin- zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

37

Sofo, J. O.; Chaudhari, A. S.; Barber, G. D. Graphane: A two-dimensional hydrocarbon. Phys. Rev. B 2007, 75, 153401.

38

Cahangirov, S.; Topsakal, M.; Akturk, E.; Şahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

39

Şahin, H.; Cahangirov, S.; Topsakal, M.; Bekaroglu, E.; Akturk, E.; Senger, R. T.; Ciraci, S. Monolayer honeycomb structures of group-IV elements and Ⅲ-V binary compounds: First-principles calculations. Phys. Rev. B 2009, 80, 155453.

40

Chen, Y. L.; Liu, Z. K.; Analytis, J. G.; Chu, J. -H.; Zhang, H. J.; Yan, B. H.; Mo, S. -K.; Moore, R. G.; Lu, D. H.; Fisher, I. R. et al. Single Dirac cone topological surface state and unusual thermoelectric property of compounds from a new topological insulator family. Phys. Rev. Lett. 2010, 105, 266401.

41

Zhou, M.; Ming, W. M.; Liu, Z.; Wang, Z. F.; Li, P.; Liu, F. Epitaxial growth of large-gap quantum spin Hall insulator on semiconductor surface. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 14378–14381.

42

Elias, D.; Nair, R. R.; Mohiuddin, T. M.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K. et al. Control of graphene's properties by reversible hydrogenation: Evidence for graphane. Science 2009, 323, 610–613.

Nano Research
Pages 3412-3420
Cite this article:
Ma Y, Kou L, Du A, et al. Group 14 element-based non-centrosymmetric quantum spin Hall insulators with large bulk gap. Nano Research, 2015, 8(10): 3412-3420. https://doi.org/10.1007/s12274-015-0842-7

677

Views

32

Crossref

N/A

Web of Science

31

Scopus

1

CSCD

Altmetrics

Received: 28 March 2015
Revised: 15 June 2015
Accepted: 18 June 2015
Published: 08 September 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return