Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Group 14 element-based non-centrosymmetric quantum spin Hall insulators with large bulk gap

Yandong Ma1()Liangzhi Kou2Aijun Du2Thomas Heine1()
Department of Physics and Earth ScienceJacobs University BremenCampus Ring 1Bremen28759Germany
School of ChemistryPhysics and Mechanical EngineeringQueensland University of TechnologyBrisbaneQueensland4001Australia
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

To date, a number of two-dimensional (2D) topological insulators (TIs) have been realized in Group 14 elemental honeycomb lattices, but all are inversionsymmetric. Here, based on first-principles calculations, we predict a new family of 2D inversion-asymmetric TIs with sizeable bulk gaps from 105 meV to 284 meV, in X2–GeSn (X = H, F, Cl, Br, I) monolayers, making them in principle suitable for room-temperature applications. The nontrivial topological characteristics of inverted band orders are identified in pristine X2–GeSn with X = (F, Cl, Br, I), whereas H2–GeSn undergoes a nontrivial band inversion at 8% lattice expansion. Topologically protected edge states are identified in X2–GeSn with X = (F, Cl, Br, I), as well as in strained H2–GeSn. More importantly, the edges of these systems, which exhibit single-Dirac-cone characteristics located exactly in the middle of their bulk band gaps, are ideal for dissipationless transport. Thus, Group 14 elemental honeycomb lattices provide a fascinating playground for the manipulation of quantum states.

Electronic Supplementary Material

Download File(s)
nr-8-10-3412_ESM.pdf (3.6 MB)

References

1

Moore, J. E. The birth of topological insulators. Nature 2013, 464, 194–198.

2

Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.

3

Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

4

Yan, B. H.; Jansen, M.; Felser, C. A large-energy-gap oxide topological insulator based on the superconductor BaBiO3. Nat. Phys. 2013, 9, 709–711.

5

Kou, L. Z.; Wu, S. C.; Felser, C.; Frauenheim, T.; Chen, C. F.; Yan, B. H. Robust 2D topological insulators in van der Waals heterostructures. ACS Nano 2014, 8, 10448–10454.

6

Ma, Y. D.; Dai, Y.; Guo, M.; Niu, C. W.; Huang, B. B. Intriguing behavior of halogenated two-dimensional tin. J. Phys. Chem. C 2012, 116, 12977–12981.

7

Bernevig, B. A.; Hughes, T. L.; Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 2006, 314, 1757–1761.

8

König, M.; Wiedmann, S.; Brüne, C.; Roth, A.; Buhmann, H.; Molenkamp, L. W.; Qi, X. L.; Zhang, S. C. Quantum spin Hall insulator state in HgTe quantum wells. Science 2007, 318, 766–770.

9

Chen, Y. L.; Analytis, J. G.; Chu, J. H.; Liu, Z. K.; Mo, S. K.; Qi, X. L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science2009, 325, 178–181.

10

Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 398–402.

11

Knez, I.; Du, R. R.; Sullivan, G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys. Rev. Lett. 2011, 107, 136603.

12

Murakami, S. Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling. Phys. Rev. Lett. 2006, 97, 236805.

13

Ma, Y. D.; Dai, Y.; Kou, L. Z.; Frauenheim, T.; Heine, T. Robust two-dimensional topological insulators in methyl- functionalized bismuth, antimony, and lead bilayer films. Nano Lett. 2005, 15, 1083–1089.

14

Song, Z. G.; Liu, C. C.; Yang, J. B.; Han, J. Z.; Ye, M.; Fu, B. T.; Yang, Y. C.; Niu, Q.; Lu, J.; Yao, Y. G. Quantum spin Hall insulators and quantum valley Hall insulators of BiX/ SbX (X = H, F, Cl and Br) monolayers with a record bulk band gap. NPG Asia Mater. 2014, 6, 147.

15

Chuang, F. C.; Yao, L. Z.; Huang, Z. Q.; Liu, Y. T.; Hsu, C. H.; Das, T.; Lin, H.; Bansil, A. Prediction of large-gap two-dimensional topological insulators consisting of bilayers of group Ⅲ elements with Bi. Nano Lett. 2014, 14, 2505–2508.

16

Weng, H. M.; Dai, X.; Fang, Z. Transition-metal pentatelluride ZrTe5 and HfTe5: A paradigm for large-gap quantum spin Hall insulators. Phys. Rev. X 2014, 4, 011002.

17

Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344–1347.

18

Xu, Y.; Yan, B. H.; Zhang, H. J.; Wang, J.; Xu, G.; Tang, P. Z.; Duan, W. H.; Zhang, S. -C. Large-gap quantum spin Hall insulators in tin films. Phys. Rev. Lett. 2013, 111, 136804.

19

Liu, C. -C.; Feng, W. X.; Yao, Y. G. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 2011, 107, 076802.

20

Ma, Y. D.; Dai, Y.; Wei, W.; Huang, B. B.; Whangbo, M. -H. Strain-induced quantum spin Hall effect in methyl-substituted germanane GeCH3. Sci. Rep. 2014, 4, 7297.

21

Ma, Y. D.; Dai, Y.; Niu, C. W.; Huang, B. B. Halogenated two-dimensional germanium: Candidate materials for being of quantum spin Hall state. J. Mater. Chem. 2012, 22, 12587–12591.

22

Liu, C. -C.; Jiang, H.; Yao, Y. G. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 2011, 84, 195430.

23

Si, C.; Liu, J. W.; Xu, Y.; Wu, J.; Gu, B. -L.; Duan, W. H. Functionalized germanene as a prototype of large-gap two-dimensional topological insulators. Phys. Rev. B 2014, 89, 115429.

24

Kane, C. L.; Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801.

25

Chen, Y. L.; Kanou, M.; Liu, Z. K.; Zhang, H. J.; Sobota, J. A.; Leuenberger, D.; Mo, S. K.; Zhou, B.; Yang, S. -L.; Kirchmann, P. S. et al. Discovery of a single topological Dirac fermion in the strong inversion asymmetric compound BiTeCl. Nat. Phys. 2013, 9, 704–708.

26

Bahramy, M. S.; Yang, B. -J.; Arita. R.; Nagaosa, N. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nat. Commun. 2012, 3, 679.

27

Wan, X. G.; Turner, A. M.; Vishwanath, A.; Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 2011, 83, 205101.

28

Brüne, C.; Liu, C. X.; Novik, E. G.; Hankiewicz, E. M.; Buhmann, H.; Chen, Y. L.; Qi, X. L.; Shen, Z. X.; Zhang, S. C.; Molenkamp. L. W. Quantum Hall effect from the topological surface states of strained bulk HgTe. Phys. Rev. Lett. 2011, 106, 126803.

29

Kuroda, K.; Ye, M.; Kimura, A.; Eremeev, S. V.; Krasovskii, E. E.; Chulkov, E. V.; Ueda, Y.; Miyamoto, K.; Okuda, T.; Shimada, K. et al. Experimental realization of a three-dimensional topological insulator phase in ternary chalcogenide TlBiSe2. Phys. Rev. Lett. 2010, 105, 146801.

30

Arguilla, M. Q.; Jiang, S. S.; Chitara, B.; Goldberger, J. E. Synthesis and stability of two-dimensional Ge/Sn graphane alloys. Chem. Mater. 2014, 26, 6941–6946.

31

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

32

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane- wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

33

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

34

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

35

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

36

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin- zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

37

Sofo, J. O.; Chaudhari, A. S.; Barber, G. D. Graphane: A two-dimensional hydrocarbon. Phys. Rev. B 2007, 75, 153401.

38

Cahangirov, S.; Topsakal, M.; Akturk, E.; Şahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

39

Şahin, H.; Cahangirov, S.; Topsakal, M.; Bekaroglu, E.; Akturk, E.; Senger, R. T.; Ciraci, S. Monolayer honeycomb structures of group-IV elements and Ⅲ-V binary compounds: First-principles calculations. Phys. Rev. B 2009, 80, 155453.

40

Chen, Y. L.; Liu, Z. K.; Analytis, J. G.; Chu, J. -H.; Zhang, H. J.; Yan, B. H.; Mo, S. -K.; Moore, R. G.; Lu, D. H.; Fisher, I. R. et al. Single Dirac cone topological surface state and unusual thermoelectric property of compounds from a new topological insulator family. Phys. Rev. Lett. 2010, 105, 266401.

41

Zhou, M.; Ming, W. M.; Liu, Z.; Wang, Z. F.; Li, P.; Liu, F. Epitaxial growth of large-gap quantum spin Hall insulator on semiconductor surface. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 14378–14381.

42

Elias, D.; Nair, R. R.; Mohiuddin, T. M.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K. et al. Control of graphene's properties by reversible hydrogenation: Evidence for graphane. Science 2009, 323, 610–613.

Nano Research
Pages 3412-3420
Cite this article:
Ma Y, Kou L, Du A, et al. Group 14 element-based non-centrosymmetric quantum spin Hall insulators with large bulk gap. Nano Research, 2015, 8(10): 3412-3420. https://doi.org/10.1007/s12274-015-0842-7
Metrics & Citations  
Article History
Copyright
Return