Graphical Abstract

The development of non-precious metal-based electrocatalysts has attracted much research attention because of their high oxygen reduction reaction (ORR) activities, low cost, and good durability. By one-step in-situ ball milling of graphite, pyrrole, and cobalt salt without resorting to high-temperature annealing, we developed a general and facile strategy to synthesize bio-inspired cobalt oxide and polypyrrole coupled with a graphene nanosheet (Co3O4-PPy/GN) complex. Herein, the exfoliation of graphite and polymerization of pyrrole occurred simultaneously during the ball milling process. Meanwhile, the Co3O4 and Co-Nx ORR active sites were generated from the oxidized cobalt ion, cobalt-PPy, and the newly exfoliated graphene nanosheets via strong π–π stacking interactions. The resultant Co3O4-PPy/GN catalysts showed efficient electrocatalytic performances for ORRs in an alkaline medium with a positive onset and reduction potentials of -0.102 and -0.196 V (vs. Ag/AgCl), as well as a high diffusion-limited current density (4.471 mA·cm-2), which was comparable to that of a Pt/C catalyst (4.941 mA·cm-2). Compared to Pt/C, Co3O4-PPy/GN catalysts displayed better long-term stability, methanol tolerance, and anti-CO-poisoning effects, which are of great significance for the design and development of advanced non-precious metal electrocatalysts.
Steele, B. C. H.; Heinze, A. Materials for fuel-cell technologies. Nature 2001, 414, 345-352.
Service, R. F. Shrinking fuel cells promise power in your pocket. Science 2002, 296, 1222-1224.
Morozan, A.; Jousselme, B.; Palacin, S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ. Sci. 2011, 4, 1238-1254.
Jasinski, R. A new fuel cell cathode catalyst. Nature 1964, 201, 1212-1213.
Xiang, Z. H.; Xue, Y. H.; Cao, D. P.; Huang, L.; Chen, J. F.; Dai, L. M. Highly efficient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non-precious metals. Angew. Chem., Int. Ed. 2014, 53, 2433-2437.
Wen, Z. H.; Ci, S. Q.; Zhang, F.; Feng, X. L.; Cui, S. M.; Mao, S. L.; Luo, S. M.; He, Z.; Chen, J. H. Nitrogen-enriched core-shell structured Fe/Fe3C-C nanorods as advanced electrocatalysts for oxygen reduction reaction. Adv. Mater. 2012, 24, 1399-1404.
Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Iron- based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71-74.
Cao, R. G.; Thapa, R.; Kim, H.; Xu, X. D.; Gyu Kim, M.; Li, Q.; Park, N.; Liu, M. L.; Cho, J. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 2013, 4, 2076-2083.
Wang, B. Recent development of non-platinum catalysts for oxygen reduction reaction. J. Power Sources 2005, 152, 1-15.
Bashyam, R.; Zelenay, P. A class of non-precious metal composite catalysts for fuel cells. Nature 2006, 443, 63-66.
Seufert, K.; Bocquet, M. L.; Auwarter, W.; Weber-Bargioni, A.; Reichert, J.; Lorente, N.; Barth, J. V. Cis-dicarbonyl binding at cobalt and iron porphyrins with saddle-shape conformation. Nat. Chem. 2011, 3, 114-119.
Tang, H.; Yin, H.; Wang, J.; Yang, N.; Wang, D.; Tang, Z. Molecular architecture of cobalt porphyrin multilayers on reduced graphene oxide sheets for high-performance oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 5585- 5589.
Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High- performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443-447.
Yuan, X.; Zeng, X.; Zhang, H.; Ma, Z.; Wang, C. Improved performance of proton exchange membrane fuel cells with P-toluenesulfonic acid-doped Co PPy/C as cathode electrocatalyst. J. Am. Chem. Soc. 2010, 132, 1754-1755.
Xu, J. B.; Gao, P.; Zhao, T. S. Non-precious Co3O4 nano- rod electrocatalyst for oxygen reduction reaction in anion- exchange membrane fuel cells. Energy Environ. Sci. 2012, 5, 5333-5339.
Jiang, C. C.; Guo, Z. Y.; Zhu, Y.; Liu, H.; Wan, M. X.; Jiang, L. Shewanella-mediated biosynthesis of manganese oxide micro-/nanocubes as efficient electrocatalysts for the oxygen reduction reaction. ChemSusChem 2015, 8, 158-163.
Zhou, W.; Ge, L.; Chen, Z. G.; Liang, F.; Xu, H. Y.; Motuzas, J.; Julbe, A.; Zhu, Z. Amorphous iron oxide decorated 3D heterostructured electrode for highly efficient oxygen reduction. Chem. Mater. 2011, 23, 4193-4198.
Lee, J. S.; Park, G. S.; Lee, H. I.; Kim, S. T.; Cao, R. G.; Liu, M. L.; Cho, J. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions. Nano Lett. 2011, 11, 5362-5366.
Tian, G. L.; Zhang, Q.; Zhang, B. S.; Jin, Y. G.; Huang, J. Q.; Su, D. S.; Wei, F. Toward full exposure of "active sites": Nanocarbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity. Adv. Funct. Mater. 2014, 24, 5956-5961.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
Claire, B.; Song, J. M.; Li, X. B.; Wu, X. S.; Nate, B.; Cécile, N.; Didier, M.; Li, T. B.; Joanna, H.; Alexei, N. M.; Edward H. C.; Phillip, N. F.; Walt, A. H. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191-1196.
Neto, A. H. C. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109-162.
Sasha, S.; Dmitriy, A. D.; Geoffrey, H. B. D.; Kevin, M. K.; Eric, J. Z.; Eric, A. S.; Richard, D. P.; SonBinh, T. N.; Rodney, S. R. Graphene-based composite materials. Nature 2006, 442, 282-286.
Geng, D. S.; Chen, Y.; Chen, Y. G.; Li, Y. L.; Li, R. Y.; Sun, X. L.; Ye, S. Y.; Knights, S. High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ. Sci. 2011, 4, 760-764.
Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Müllen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082-9085.
Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.
Li, S.; Wu, D. Q.; Cheng, C.; Wang, J. Z.; Zhang, F.; Su, Y. Z.; Feng, X. L. Polyaniline-coupled multifunctional 2D metal oxide/hydroxide graphene nanohybrids. Angew. Chem. , Int. Ed. 2013, 52, 12105-12109.
Jiang, S.; Zhu, C. Z.; Dong, S. J. Cobalt and nitrogen- cofunctionalized graphene as a durable non-precious metal catalyst with enhanced ORR activity. J. Mater. Chem. 2013, 1, 3593-3599.
Hu, L. H.; Peng, Q.; Li, Y. D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 2008, 130, 16136-16137.
Lin, T.; Tang, Y.; Wang, Y.; Bi, H.; Liu, Z.; Huang, F.; Xiec, X.; Jiang, M. Scotch-tape-like exfoliation of graphite assisted with elemental sulfur and graphene-sulfur composites for high-performance lithium-sulfur batteries. Energy Environ. Sci. 2013, 6, 1283-1290.
Ni, Z. H.; Yu, T.; Lu, Y. H.; Wang, Y. Y.; Feng, Y. P.; Shen, Z. X. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. Acs Nano 2008, 11, 2301-2305.
Zhao, Y. C.; Zhan, L.; Tian, J. N.; Sulian Nie; Ning, Z. Enhanced electrocatalytic oxidation of methanol on Pd/ polypyrrole-graphene in alkaline medium. Electrochim. Acta 2011, 56, 1967-1972.
Bora, C.; Dolui, S. K. Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties. Polymer 2012, 53, 923-932.
Collins, P. G. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 2000, 287, 1801-1804.
Li, Y. G.; Zhou, W.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Wei, F.; Idrobo, J. C.; Pennycook, S. J.; Dai, H. J. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotechnol. 2012, 7, 394-400.
Luo, Z. Q.; Lim, S. H.; Tian, Z. Q.; Shang, J. Z.; Lai, L. F.; MacDonald, B.; Fu, C.; Shen, Z. X.; Yu, T.; Lin, J. Y. Pyridinic N doped graphene: Synthesis, electronic structure, and electrocatalytic property. J. Mater. Chem. 2011, 21, 8038-8044.
Song, S. G.; Xue, Y. H.; Feng, L. F.; Elbatal, H.; Wang, P. S.; Moorefield, C. N.; Newkome, G. R.; Dai, L. M. Reversible self-assembly of terpyridine-functionalized graphene oxide for energy conversion. Angew. Chem., Int. Ed. 2014, 53, 1415-1419.
Ding, W.; Wei, Z. D.; Chen, S. G.; Qi, X. Q.; Yang, T.; Hu, J. S.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Space- confinement-induced synthesis of pyridinic- and pyrrolic- nitrogen-doped graphene for the catalysis of oxygen reduction. Angew. Chem., Int. Ed. 2013, 52, 11755-11759.
Unni, S. M.; Devulapally, S.; Karjule, N.; Kurungot, S. Graphene enriched with pyrrolic coordination of the doped nitrogen as an efficient metal-free electrocatalyst for oxygen reduction. J. Mater. Chem. 2012, 22, 23506-23513.
Ziegelbauer, J. M.; Tim, S. O.; Svitlana, P.; Faisal, A.; Cherno, J.; Plamen, A.; Mukerjee, S. Direct spectroscopic observation of the structural origin of peroxide generation from Co-based pyrolyzed porphyrins for ORR applications. J. Phys. Chem. C 2008, 112, 8839-8849.
Prakash, D.; Masuda, Y.; Sanjeeviraja, C. Structural electrical and electrochemical studies of LiCoVO4 cathode material for lithium rechargeable batteries. Powder Technol. 2013, 235, 454-459.