AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Room-temperature tracking of chiral recognition process at the single-molecule level

Ruilin Xu1Juan Liu1Feng Chen1Nianhua Liu1,2Yingxiang Cai1Xiaoqing Liu1Xin Song1,3Mingdong Dong3( )Li Wang1,2( )
Department of PhysicsNanchang UniversityNanchang330031China
Nanoscience and Nanotechnology LaboratoryInstitute for Advanced StudyNanchang UniversityNanchang330031China
Interdisciplinary Nanoscience CenterCentre for DNA Nanotechnology (CDNA)Aarhus University, AarhusC 8000Denmark
Show Author Information

Graphical Abstract

Abstract

The molecular-level identification of a chiral recognition process of phthalocyanine (Pc) was studied on a Cu(100) surface by scanning tunneling microscopy (STM). STM revealed that a chiral Pc molecule forms a series of metastable dimer configurations with other Pc molecules. Eventually, the Pc molecule recognizes another Pc molecule with the same chirality to form a stable dimer configuration. Homochiral dimers were found on the Cu surface, demonstrating the chiral specificity of Pc dimerization. The mechanism for this chiral recognition process is identified, disclosing the critical role of the particular adsorption geometry of the chiral dimers on the Cu surface.

Electronic Supplementary Material

Video
12274_2015_850_MOESM2_ESM.mov
12274_2015_850_MOESM3_ESM.mov
Download File(s)
12274_2015_850_MOESM1_ESM.pdf (656.9 KB)

References

1

Barlow, S. M.; Raval, R. Complex organic molecules at metal surfaces: Bonding, organisation and chirality. Surf. Sci. Rep. 2003, 50, 201-341.

2

Vijayaraghavan, A.; Hennrich, F.; Stürzl, N.; Engel, M.; Ganzhorn, M.; Oron-Carl, M.; Marquardt, C. W.; Dehm, S.; Lebedkin, S.; Kappes, M. M. et al. Toward single-chirality carbon nanotube device arrays. ACS Nano 2010, 4, 2748-2754.

3

Speranza, M.; Rondino, F.; Satta, M.; Paladini, A.; Giardini, A.; Catone, D.; Piccirillo, S. Molecular and supramolecular chirality: R2PI spectroscopy as a tool for the gas-phase recognition of chiral systems of biological interest. Chirality 2009, 21, 119-144.

4

Tahara, K.; Yamaga, H.; Ghijsens, E.; Inukai, K.; Adisoejoso, J.; Blunt, M. O.; De Feyter, S.; Tobe, Y. Control and induction of surface-confined homochiral porous molecular networks. Nat. Chem. 2011, 3, 714-719.

5

Raval, R. Chiral expression from molecular assemblies at metal surfaces: Insights from surface science techniques. Chem. Soc. Rev. 2009, 38, 707-721.

6

Ernst, K. -H. Supramolecular surface chirality. In Topics in Current Chemistry: Supramolecular Chirality; Springer Berlin: Heidelberg, 2006; pp 209-252.

7

Lingenfelder, M.; Tomba, G.; Costantini, G.; Ciacchi, L. C.; De Vita, A.; Kern, K. Tracking the chiral recognition of adsorbed dipeptides at the single-molecule level. Angew. Chem., Int. Ed. 2007, 46, 4492-4495.

8

Mugarza, A.; Lorente, N.; Ordejón, P.; Krull, C.; Stepanow, S.; Bocquet, M. -L.; Fraxedas, J.; Ceballos, G.; Gambardella, P. Orbital specific chirality and homochiral self-assembly of achiral molecules induced by charge transfer and spontaneous symmetry breaking. Phys. Rev. Lett. 2010, 105, 115702.

9

Chen, F.; Chen, X.; Liu, L. C.; Song, X.; Liu, S. Y.; Liu, J.; Ouyang, H. P.; Cai, Y. X.; Liu, X. Q.; Pan, H. B.; et al. Chiral recognition of zinc phthalocyanine on Cu(100) surface. Appl. Phys. Lett. 2012, 100, 081602.

10

Fischer, E. Einfluss der configuration auf die wirkung der enzyme. Ber. Dtsch. Chem. Ges. 1894, 27, 2985-2993.

11

Easson, L. H.; Stedman, E. Studies on the relationship between chemical constitution and physiological action: Molecular dissymmetry and physiological activity. Biochem. J. 1933, 27, 1257-1266.

12

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane- wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

13

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

14

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

15

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

16

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple[Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396.

17

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799.

18

Bučko, T.; Hafner, J.; Lebègue, S.; Ángyán, J. G. Improved description of the structure of molecular and layered crystals: Ab initio DFT calculations with van der Waals corrections. J. Phys. Chem. A 2010, 114, 11814-11824.

19

Amsalem, P.; Giovanelli, L.; Themlin J. M.; Angot, T. Electronic and vibrational properties at the ZnPc/Ag(110) interface. Phys. Rev. B 2009, 79, 235426.

20

Kitamura, S.; Sato, T.; Iwatsuki, M. Observation of surface reconstruction on silicon above 800 ℃ using the STM. Nature 1991, 351, 215-217.

21

Nakakura, C. Y.; Phanse, V. M.; Zheng, G.; Bannon, G.; Altman, E. I.; Lee, K. P. A high-speed variable-temperature ultrahigh vacuum scanning tunneling microscope. Rev. Sci. Instrum. 1998, 69, 3251-3258.

22

Buchner, F.; Xiao, J.; Zillner, E.; Chen, M.; Röckert, M.; Ditze, S.; Stark, M.; Steinrück, H. -P.; Gottfried, J. M.; Marbach, H. Diffusion, rotation, and surface chemical bond of individual 2H-tetraphenylporphyrin molecules on Cu(111). J. Phys. Chem. C 2011, 115, 24172-24177.

Nano Research
Pages 3505-3511
Cite this article:
Xu R, Liu J, Chen F, et al. Room-temperature tracking of chiral recognition process at the single-molecule level. Nano Research, 2015, 8(11): 3505-3511. https://doi.org/10.1007/s12274-015-0850-7

609

Views

6

Crossref

N/A

Web of Science

6

Scopus

2

CSCD

Altmetrics

Received: 13 March 2015
Revised: 29 June 2015
Accepted: 02 July 2015
Published: 03 September 2015
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2015
Return