AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Two-dimensional Ni(OH)2 nanoplates for flexible on-chip microsupercapacitors

Hao Wu1,2Kai Jiang3( )Shaosong Gu1,Hong Yang2Zheng Lou1Di Chen4Guozhen Shen1( )
State Key Laboratory for Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
The Key Laboratory of Resource Chemistry of Ministry of EducationShanghai Key Laboratory of Rare Earth Functional Materialsand Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and SensorsShanghai Normal UniversityShanghai200234China
Institute & Hospital of Hepatobiliary SurgeryKey Laboratory of Digital Hepatobiliary Surgery of Chinese PLAChinese PLA Medical SchoolChinese PLA General HospitalBeijing100853China
School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijing100083China

Present address: China University of Mining & Technology, Beijing 100083, China

Show Author Information

Graphical Abstract

Abstract

On-chip microsupercapacitors (MSCs) compatible with on-chip geometries of integrated circuits can be used either as a separate power supply in microelectronic devices or as an energy storage or energy receptor accessory unit. In this work, we report the fabrication of flexible two-dimensional Ni(OH)2 nanoplates-based MSCs, which achieved a specific capacitance of 8.80 F/cm3 at the scan rates of 100 mV/s, losing only 0.20% of its original value after 10, 000 charge/discharge cycles. Besides, the MSCs reached an energy density of 0.59 mWh/cm3 and a power density up to 1.80 W/cm3, which is comparable to traditional carbon-based devices. The flexible MSCs exhibited good electrochemical stability when subjected to bending at various conditions, illustrating the promising application as electrodes for wearable energy storage.

Electronic Supplementary Material

Download File(s)
12274_2015_854_MOESM1_ESM.pdf (1.3 MB)

References

1

Patten, B.; Sánchez, I. A.; Tangney, B. Designing collaborative, constructionist and contextual applications for handheld devices. Comput. Educ. 2006, 46, 294-308.

2

Yao, S. C.; Tang, X. D.; Hsieh, C. C.; Alyousef, Y.; Vladimer, M.; Fedder, G. K.; Amon, C. H. Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development. Energy 2006, 31, 636-649.

3

Zhang, J.; Tan, K. L.; Gong, H. Q. Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS). Polym. Test. 2001, 20, 693-701.

4

Henzen, A.; van der Kamer, J.; Nakamura, T.; Tsuji, T.; Yasui, M.; Pitt, M.; Duthaler, G.; Amundson, K.; Gates, H.; Zehner, R. Development of active-matrix electronic-ink displays for handheld devices. J. Soc. Inf. Display 2004, 12, 17-22.

5

Zhu, Y. G.; Wang, Y.; Shi, Y. M.; Wong, J. I.; Yang, H. Y. CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor. Nano Energy 2014, 3, 46-54.

6

Meng, Q. H.; Wu, H. Q.; Meng, Y. N.; Xie, K.; Wei, Z. X.; Guo, Z. X. High-performance all-carbon yarn micro- supercapacitor for an integrated energy system. Adv. Mater. 2014, 26, 4100-4106.

7

Sumboja, A.; Foo, C. Y.; Wang, X.; Lee, P. S. Large areal mass, flexible and free-standing reduced graphene oxide/ manganese dioxide paper for asymmetric supercapacitor device. Adv. Mater. 2013, 25, 2809-2815.

8

Wu, Z. S.; Parvez, K.; Feng, X. L.; Müllen, K. Graphene- based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 2013, 4, 2487.

9

Rolison, D. R.; Long, J. W.; Lytle, J. C.; Fischer, A. E.; Rhodes, C. P.; McEvoy, T. M.; Bourgm, M. E.; Lubers, A. M. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 2009, 38, 226-252.

10

Wang, Y.; Shi, Y. M.; Zhao, C. X.; Wong, J. I.; Sun, X. W.; Yang, H. Y. Printed all-solid flexible microsupercapacitors: Towards the general route for high energy storage devices. Nanotechnology 2014, 25, 094010.

11

Sung, J. H.; Kim, S. J.; Jeong, S. H.; Kim, E. H.; Lee, K. H. Flexible micro-supercapacitors. J. Power Sources 2006, 162, 1467-1470.

12

Chmiola, J.; Largeot, C.; Taberna, P. L.; Simon, P.; Gogotsi, Y. Monolithic carbide-derived carbon films for micro- supercapacitors. Science 2010, 328, 480-483.

13

Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5, 651-654.

14

Xu, J.; Shen, G. Z. A flexible integrated photodetector system driven by on-chip microsupercapacitors. Nano Energy 2015, 13, 131-139.

15

El-Kady, M. F.; Kaner, R. B. Scalable fabrication of high- power graphene micro-supercapacitors for flexible and on- chip energy storage. Nat. Commun. 2013, 4, 1475.

16

Lee, G.; Kim, D.; Yun, J.; Ko, Y. M.; Cho, J.; Ha, J. S. High-performance all-solid-state flexible micro-supercapacitor arrays with layer-by-layer assembled MWNT/MnOx nanocomposite electrodes. Nanoscale 2014, 6, 9655-9664.

17

Wu, Z. K.; Lin, Z. Y.; Li, L. Y.; Song, B.; Moon, K. S.; Bai, S. L.; Wong, C. P. Flexible micro-supercapacitor based on in-situ assembled graphene on metal template at room temperature. Nano Energy 2014, 10, 222-228.

18

Peng, L. L.; Peng, X.; Liu, B. R.; Wu, C. Z.; Xie, Y.; Yu, G. H. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 2013, 13, 2151-2157.

19

Liu, W. W.; Feng, Y. Q.; Yan, X. B.; Chen, J. T.; Xue, Q. J. Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater. 2013, 23, 4111-4122.

20

Huang, P. H.; Pech, D.; Lin, R. Y.; McDonough, J. K.; Brunet, M.; Taberna, P. L.; Gogotsi, Y.; Simon, P. On-chip micro- supercapacitors for operation in a wide temperature range. Electrochem. Commun. 2013, 36, 53-56.

21

Hsia, B.; Marschewski, J.; Wang, S.; In, J. B.; Carraro, C.; Poulikakos, D.; Grigoropoulos, C. P.; Maboudian, R. Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes. Nanotech 2014, 25, 055401.

22

Xiong, G. P.; Meng, C. Z.; Reifenberger, R. G.; Irazoqui, P. P.; Fisher, T. S. A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 2014, 26, 30-51.

23

Niu, Z. Q.; Zhang, L.; Liu, L. L.; Zhu, B. W.; Dong, H. B.; Chen, X. D. All-solid-state flexible ultrathin micro- supercapacitors based on graphene. Adv. Mater. 2013, 25, 4035-4042.

24

Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L. J.; Vajtai, R.; Zhang, Q.; Wei, B. Q.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496-500.

25

Lin, J.; Zhang, C. G.; Yan, Z.; Zhu, Y.; Peng, Z. W.; Hauge, R. H.; Natelson, D.; Tour, J. M. 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 2013, 13, 72-78.

26

Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes. Electrochim. Acta 2011, 56, 9508-9514.

27

Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 2012, 22, 4501-4510.

28

Wu, C. Z.; Lu, X. L.; Peng, L. L.; Xu, K.; Peng, X.; Huang, J. L.; Yu, G. H.; Xie, Y. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat. Commun. 2013, 4, 2431.

29

Han, J. H.; Lin, Y. C.; Chen, L. Y.; Tsai, Y. C.; Ito, Y.; Guo, X. W.; Hirata, A.; Fujita, T.; Esashi, M.; Gessner, T. et al. On- chip micro-pseudocapacitors for ultrahigh energy and power delivery. Adv. Sci. 2015, 2, DOI: 10.1002/advs.201500067.

30

Zhang, G. Q.; Yu, L.; Hoster, H. E.; Lou, X. W. Synthesis of one-dimensional hierarchical NiO hollow nanostructures with enhanced supercapacitive performance. Nanoscale 2013, 5, 877-881.

31

Wang, B.; Chen, J. S.; Wang, Z. Y.; WMadhavi, S.; Lou, X. W. Green synthesis of NiO nanobelts with exceptional pseudo-capacitive properties. Adv. Energy Mater. 2012, 2, 1188-1192.

32

Shen, L. F.; Yu, L.; Yu, X. Y.; Zhang, X. G.; Lou, X. W. Self- templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem., Int. Ed. 2015, 54, 1868-1872.

33

Xu, Y. X.; Huang, X. Q.; Lin, Z. Y.; Zhong, X.; Huang, Y.; Duan, X. F. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced hree-dimensional supercapacitor electrode materials. Nano Res. 2013, 6, 65-76.

34

Zhu, J. W.; Chen, S.; Zhou, H.; Wang, X. Fabrication of a low defect density graphene-nickel hydroxide nanosheet hybrid with enhanced electrochemical performance. Nano Res. 2012, 5, 11-19.

35

Wang, H. L.; Holt, C. M. B.; Li, Z.; Tan, X. H.; Amirkhiz, B. S.; Xu, Z. W.; Olsen, B. C.; Stephenson, T.; Mitlin, D. Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res. 2012, 5, 605-617.

36

Xiao, X. L.; Liu, X. F.; Wang, L.; Zhao, H.; Hu, Z. B.; He, X. M.; Li, Y. D. LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries. Nano Res. 2012, 5, 395-401.

37

Su, D. W.; Dou, S. X.; Wang, G. X. Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries. Nano Res. 2014, 7, 794-803.

38

Lee, C. W.; Seo, S. D.; Kim, D. W.; Park, S.; Jin, K.; Kim, D. W; Hong, K. S. Heteroepitaxial growth of ZnO nanosheet bands on ZnCo2O4 submicron rods toward high-performance Li ion battery electrodes. Nano Res. 2013, 6, 348-355.

39

Wang, Q. F.; Wang, X. F.; Xu, J.; Ouyang, X.; Hou, X. J.; Chen, D.; Wang, R. M.; Shen, G. Z. Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 2014, 8, 44-51.

40

Ren, Y. M.; Wang, L.; Dai, Z. J.; Huang, X. K.; Li, J. J.; Chen, N.; Gao, J.; Zhao, H. L.; Sun, X. M.; He, X. M. Hydrothermal synthesis of β-Ni(OH)2 nanoplates as electrochemical pseudocapacitor materials. Int. J. Electrochem. Sci. 2012, 7, 12236-12243.

41

Alhebshi, N. A.; Rakhi, R. B.; Alshareef, H. N. Conformal coating of Ni(OH)2 nanoflakes on carbon fibers by chemical bath deposition for efficient supercapacitor electrodes. J. Mater. Chem. A. 2013, 1, 14897-14903.

42

Xu, J.; Wu, H.; Lu, L. F.; Leung, S. F.; Chen, D.; Chen, X. Y.; Fan, Z. Y.; Shen, G. Z.; Li, D. D. Integrated photo- supercapacitor based on Bi-polar TiO2 nanotube arrays with selective one-side plasma-assisted hydrogenation. Adv. Funct. Mater. 2014, 24, 1840-1846.

43

Wu, H.; Lou, Z.; Yang, H.; Shen, G. Z. A flexible spiral-type supercapacitor based on ZnCo2O4 nanorod electrodes. Nanoscale 2015, 7, 1921-1926.

44

Kurra, N.; Alhebshi, N. A.; Alshareef, H. N. Microfabricated pseudocapacitors using Ni(OH)2 electrodes exhibit remarkable volumetric capacitance and energy density. Adv. Energy Mater. 2015, 5, DOI: 10.1002/aenm.201401303.

45

Jiang, H.; Zhao, T.; Li, C. Z.; Ma, J. Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. J. Mater. Chem. 2011, 21, 3818-3823.

46

Lim, B. Y.; Yoon, J. Y.; Yun, J. Y.; Kim, D.; Hong, S. Y.; Lee, S. J.; Zi, G.; Ha, J. S. Biaxially stretchable, integrated array of high performance microsupercapacitors. ACS Nano 2014, 8, 11639-11650.

47

Sun, C. L.; Shi, J.; Bayerl, D. J.; Wang, X. D. PVDF microbelts for harvesting energy from respiration. Energy Environ. Sci. 2011, 4, 4508-4512.

Nano Research
Pages 3544-3552
Cite this article:
Wu H, Jiang K, Gu S, et al. Two-dimensional Ni(OH)2 nanoplates for flexible on-chip microsupercapacitors. Nano Research, 2015, 8(11): 3544-3552. https://doi.org/10.1007/s12274-015-0854-3

738

Views

53

Crossref

N/A

Web of Science

52

Scopus

8

CSCD

Altmetrics

Received: 05 May 2015
Revised: 29 June 2015
Accepted: 05 July 2015
Published: 14 September 2015
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2015
Return