Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
On-chip microsupercapacitors (MSCs) compatible with on-chip geometries of integrated circuits can be used either as a separate power supply in microelectronic devices or as an energy storage or energy receptor accessory unit. In this work, we report the fabrication of flexible two-dimensional Ni(OH)2 nanoplates-based MSCs, which achieved a specific capacitance of 8.80 F/cm3 at the scan rates of 100 mV/s, losing only 0.20% of its original value after 10, 000 charge/discharge cycles. Besides, the MSCs reached an energy density of 0.59 mWh/cm3 and a power density up to 1.80 W/cm3, which is comparable to traditional carbon-based devices. The flexible MSCs exhibited good electrochemical stability when subjected to bending at various conditions, illustrating the promising application as electrodes for wearable energy storage.
Patten, B.; Sánchez, I. A.; Tangney, B. Designing collaborative, constructionist and contextual applications for handheld devices. Comput. Educ. 2006, 46, 294-308.
Yao, S. C.; Tang, X. D.; Hsieh, C. C.; Alyousef, Y.; Vladimer, M.; Fedder, G. K.; Amon, C. H. Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development. Energy 2006, 31, 636-649.
Zhang, J.; Tan, K. L.; Gong, H. Q. Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS). Polym. Test. 2001, 20, 693-701.
Henzen, A.; van der Kamer, J.; Nakamura, T.; Tsuji, T.; Yasui, M.; Pitt, M.; Duthaler, G.; Amundson, K.; Gates, H.; Zehner, R. Development of active-matrix electronic-ink displays for handheld devices. J. Soc. Inf. Display 2004, 12, 17-22.
Zhu, Y. G.; Wang, Y.; Shi, Y. M.; Wong, J. I.; Yang, H. Y. CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor. Nano Energy 2014, 3, 46-54.
Meng, Q. H.; Wu, H. Q.; Meng, Y. N.; Xie, K.; Wei, Z. X.; Guo, Z. X. High-performance all-carbon yarn micro- supercapacitor for an integrated energy system. Adv. Mater. 2014, 26, 4100-4106.
Sumboja, A.; Foo, C. Y.; Wang, X.; Lee, P. S. Large areal mass, flexible and free-standing reduced graphene oxide/ manganese dioxide paper for asymmetric supercapacitor device. Adv. Mater. 2013, 25, 2809-2815.
Wu, Z. S.; Parvez, K.; Feng, X. L.; Müllen, K. Graphene- based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 2013, 4, 2487.
Rolison, D. R.; Long, J. W.; Lytle, J. C.; Fischer, A. E.; Rhodes, C. P.; McEvoy, T. M.; Bourgm, M. E.; Lubers, A. M. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 2009, 38, 226-252.
Wang, Y.; Shi, Y. M.; Zhao, C. X.; Wong, J. I.; Sun, X. W.; Yang, H. Y. Printed all-solid flexible microsupercapacitors: Towards the general route for high energy storage devices. Nanotechnology 2014, 25, 094010.
Sung, J. H.; Kim, S. J.; Jeong, S. H.; Kim, E. H.; Lee, K. H. Flexible micro-supercapacitors. J. Power Sources 2006, 162, 1467-1470.
Chmiola, J.; Largeot, C.; Taberna, P. L.; Simon, P.; Gogotsi, Y. Monolithic carbide-derived carbon films for micro- supercapacitors. Science 2010, 328, 480-483.
Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5, 651-654.
Xu, J.; Shen, G. Z. A flexible integrated photodetector system driven by on-chip microsupercapacitors. Nano Energy 2015, 13, 131-139.
El-Kady, M. F.; Kaner, R. B. Scalable fabrication of high- power graphene micro-supercapacitors for flexible and on- chip energy storage. Nat. Commun. 2013, 4, 1475.
Lee, G.; Kim, D.; Yun, J.; Ko, Y. M.; Cho, J.; Ha, J. S. High-performance all-solid-state flexible micro-supercapacitor arrays with layer-by-layer assembled MWNT/MnOx nanocomposite electrodes. Nanoscale 2014, 6, 9655-9664.
Wu, Z. K.; Lin, Z. Y.; Li, L. Y.; Song, B.; Moon, K. S.; Bai, S. L.; Wong, C. P. Flexible micro-supercapacitor based on in-situ assembled graphene on metal template at room temperature. Nano Energy 2014, 10, 222-228.
Peng, L. L.; Peng, X.; Liu, B. R.; Wu, C. Z.; Xie, Y.; Yu, G. H. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 2013, 13, 2151-2157.
Liu, W. W.; Feng, Y. Q.; Yan, X. B.; Chen, J. T.; Xue, Q. J. Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater. 2013, 23, 4111-4122.
Huang, P. H.; Pech, D.; Lin, R. Y.; McDonough, J. K.; Brunet, M.; Taberna, P. L.; Gogotsi, Y.; Simon, P. On-chip micro- supercapacitors for operation in a wide temperature range. Electrochem. Commun. 2013, 36, 53-56.
Hsia, B.; Marschewski, J.; Wang, S.; In, J. B.; Carraro, C.; Poulikakos, D.; Grigoropoulos, C. P.; Maboudian, R. Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes. Nanotech 2014, 25, 055401.
Xiong, G. P.; Meng, C. Z.; Reifenberger, R. G.; Irazoqui, P. P.; Fisher, T. S. A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 2014, 26, 30-51.
Niu, Z. Q.; Zhang, L.; Liu, L. L.; Zhu, B. W.; Dong, H. B.; Chen, X. D. All-solid-state flexible ultrathin micro- supercapacitors based on graphene. Adv. Mater. 2013, 25, 4035-4042.
Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L. J.; Vajtai, R.; Zhang, Q.; Wei, B. Q.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496-500.
Lin, J.; Zhang, C. G.; Yan, Z.; Zhu, Y.; Peng, Z. W.; Hauge, R. H.; Natelson, D.; Tour, J. M. 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 2013, 13, 72-78.
Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes. Electrochim. Acta 2011, 56, 9508-9514.
Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 2012, 22, 4501-4510.
Wu, C. Z.; Lu, X. L.; Peng, L. L.; Xu, K.; Peng, X.; Huang, J. L.; Yu, G. H.; Xie, Y. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat. Commun. 2013, 4, 2431.
Han, J. H.; Lin, Y. C.; Chen, L. Y.; Tsai, Y. C.; Ito, Y.; Guo, X. W.; Hirata, A.; Fujita, T.; Esashi, M.; Gessner, T. et al. On- chip micro-pseudocapacitors for ultrahigh energy and power delivery. Adv. Sci. 2015, 2, DOI: 10.1002/advs.201500067.
Zhang, G. Q.; Yu, L.; Hoster, H. E.; Lou, X. W. Synthesis of one-dimensional hierarchical NiO hollow nanostructures with enhanced supercapacitive performance. Nanoscale 2013, 5, 877-881.
Wang, B.; Chen, J. S.; Wang, Z. Y.; WMadhavi, S.; Lou, X. W. Green synthesis of NiO nanobelts with exceptional pseudo-capacitive properties. Adv. Energy Mater. 2012, 2, 1188-1192.
Shen, L. F.; Yu, L.; Yu, X. Y.; Zhang, X. G.; Lou, X. W. Self- templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem., Int. Ed. 2015, 54, 1868-1872.
Xu, Y. X.; Huang, X. Q.; Lin, Z. Y.; Zhong, X.; Huang, Y.; Duan, X. F. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced hree-dimensional supercapacitor electrode materials. Nano Res. 2013, 6, 65-76.
Zhu, J. W.; Chen, S.; Zhou, H.; Wang, X. Fabrication of a low defect density graphene-nickel hydroxide nanosheet hybrid with enhanced electrochemical performance. Nano Res. 2012, 5, 11-19.
Wang, H. L.; Holt, C. M. B.; Li, Z.; Tan, X. H.; Amirkhiz, B. S.; Xu, Z. W.; Olsen, B. C.; Stephenson, T.; Mitlin, D. Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res. 2012, 5, 605-617.
Xiao, X. L.; Liu, X. F.; Wang, L.; Zhao, H.; Hu, Z. B.; He, X. M.; Li, Y. D. LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries. Nano Res. 2012, 5, 395-401.
Su, D. W.; Dou, S. X.; Wang, G. X. Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries. Nano Res. 2014, 7, 794-803.
Lee, C. W.; Seo, S. D.; Kim, D. W.; Park, S.; Jin, K.; Kim, D. W; Hong, K. S. Heteroepitaxial growth of ZnO nanosheet bands on ZnCo2O4 submicron rods toward high-performance Li ion battery electrodes. Nano Res. 2013, 6, 348-355.
Wang, Q. F.; Wang, X. F.; Xu, J.; Ouyang, X.; Hou, X. J.; Chen, D.; Wang, R. M.; Shen, G. Z. Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 2014, 8, 44-51.
Ren, Y. M.; Wang, L.; Dai, Z. J.; Huang, X. K.; Li, J. J.; Chen, N.; Gao, J.; Zhao, H. L.; Sun, X. M.; He, X. M. Hydrothermal synthesis of β-Ni(OH)2 nanoplates as electrochemical pseudocapacitor materials. Int. J. Electrochem. Sci. 2012, 7, 12236-12243.
Alhebshi, N. A.; Rakhi, R. B.; Alshareef, H. N. Conformal coating of Ni(OH)2 nanoflakes on carbon fibers by chemical bath deposition for efficient supercapacitor electrodes. J. Mater. Chem. A. 2013, 1, 14897-14903.
Xu, J.; Wu, H.; Lu, L. F.; Leung, S. F.; Chen, D.; Chen, X. Y.; Fan, Z. Y.; Shen, G. Z.; Li, D. D. Integrated photo- supercapacitor based on Bi-polar TiO2 nanotube arrays with selective one-side plasma-assisted hydrogenation. Adv. Funct. Mater. 2014, 24, 1840-1846.
Wu, H.; Lou, Z.; Yang, H.; Shen, G. Z. A flexible spiral-type supercapacitor based on ZnCo2O4 nanorod electrodes. Nanoscale 2015, 7, 1921-1926.
Kurra, N.; Alhebshi, N. A.; Alshareef, H. N. Microfabricated pseudocapacitors using Ni(OH)2 electrodes exhibit remarkable volumetric capacitance and energy density. Adv. Energy Mater. 2015, 5, DOI: 10.1002/aenm.201401303.
Jiang, H.; Zhao, T.; Li, C. Z.; Ma, J. Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. J. Mater. Chem. 2011, 21, 3818-3823.
Lim, B. Y.; Yoon, J. Y.; Yun, J. Y.; Kim, D.; Hong, S. Y.; Lee, S. J.; Zi, G.; Ha, J. S. Biaxially stretchable, integrated array of high performance microsupercapacitors. ACS Nano 2014, 8, 11639-11650.
Sun, C. L.; Shi, J.; Bayerl, D. J.; Wang, X. D. PVDF microbelts for harvesting energy from respiration. Energy Environ. Sci. 2011, 4, 4508-4512.