AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A facile synthesis of hierarchical Sn3O4 nanostructures in an acidic aqueous solution and their strong visible-light-driven photocatalytic activity

Hui Song1Su-Young Son1,2Seul Ki Kim1Gun Young Jung1( )
School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST)Gwangju500-712Republic of Korea
Carbon Convergence Materials Research CenterInstitute of Advanced Composite MaterialsKorea Institute of Science and Technology (KIST)Jeollabuk-do565-905Republic of Korea
Show Author Information

Graphical Abstract

Abstract

Hierarchical tin(Ⅲ) oxide, Sn3O4, nanospheres were synthesized via hydrothermal reaction under strongly acidic ambient conditions. The morphology of Sn3O4 varied with decreasing pH. The prickly Sn3O4 nanospheres changed into Sn3O4 nanospheres covered with single-crystalline nanoplates having a high BET surface area of ca. 55.05 m2·g–1 and a band gap of ca. 2.25 eV. Small amounts (0.05 g) of the hierarchical Sn3O4 nanostructures completely decomposed a 30% methyl orange (MO) solution in 100 mL deionized water within 15 min under one sun condition (UV + visible light). The Sn3O4 photocatalyst exhibited a fast decomposition rate of 1.73 × 10-1 min-1, which is a 90.86% enhancement relative to that of the commercially available P25 photocatalyst. The high photocatalytic activity of the hierarchical Sn3O4 nanostructures is attributed to its ability to absorb visible light and its high surface-to-volume ratio.

Electronic Supplementary Material

Download File(s)
12274_2015_855_MOESM1_ESM.pdf (662.5 KB)

References

1

Dai, Z. R.; Gole, J. L.; Stout, J. D.; Wang, Z. L. Tin oxide nanowires, nanoribbons, and nanotubes. J. Phys. Chem. B 2002, 106, 1274-1279.

2

Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947-1949.

3

Xu, X. X.; Zhuang, J.; Wang, X. SnO2 quantum dots and quantum wires: Controllable synthesis, self-assembled 2D architectures, and gas-sensing properties. J. Am. Chem. Soc. 2008, 130, 12527-12535.

4

Cheng, Y.; Chen, K. S.; Meyer, N. L.; Yuan, J.; Hirst, L. S.; Chase, P. B.; Xiong, P. Functionalized SnO2 nanobelt field-effect transistor sensors for label-free detection of cardiac troponin. Biosens. Bioelectron. 2011, 26, 4538-4544.

5

Ding, S. J.; Chen, J. S.; Qi, G. G.; Duan, X. N.; Wang, Z. Y.; Giannelis, E. P.; Archer, L. A.; Lou, X. W. Formation of SnO2 hollow nanospheres inside mesoporous silica. J. Am. Chem. Soc. 2011, 133, 21-23.

6

Song, H.; Lee, K. -H.; Jeong, H.; Um, S. H.; Han, G. -S.; Jung, H. S.; Jung, G. Y. A simple self-assembly route to single crystalline SnO2 nanorod growth by oriented attachment for dye sensitized solar cells. Nanoscale 2013, 5, 1188-1194.

7

Shi, L. A.; Lin, H. L. Facile fabrication and optical property of hollow SnO2 spheres and their application in water treatment. Langmuir 2010, 26, 18718-18722.

8

Wang, H. J.; Sun, F. Q.; Zhang, Y.; Li, L. S.; Chen, H. Y.; Wu, Q. S.; Yu. J. C. Photochemical growth of nanoporous SnO2 at the air-water interface and its high photocatalytic activity. J. Mater. Chem. 2010, 20, 5641-5645.

9

Nasr, C.; Kamat, P. V.; Hotchandani, S. Photoelectrochemical behavior of coupled SnO2/CdSe nanocrystalline semiconductor films. J. Electroanal. Chem. 1997, 420, 201-207.

10

Kar, A.; Kundu, S.; Patra, A. Photocatalytic properties of semiconductor SnO2/CdS heterostructure nanocrystals. RSC Adv. 2012, 2, 10222-10230.

11

Vlachopoulos, N.; Liska, P.; Augustynski, J.; Gratzel, M. Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films. J. Am. Chem. Soc. 1988, 110, 1216-1220.

12

Wrighton, M. S.; Ginley, D. S.; Wolczanski, P. T.; Ellis, A. B.; Morse, D. L.; Linz, A. Photoassisted electrolysis of water by irradiation of a titanium dioxide electrode. Proc. Natl. Acad. Sci. USA. 1975, 72, 1518-1522.

13

He, Y. H.; Li, D. Z.; Chen, J.; Shao, Y.; Xian, J. J.; Zheng, X. Z.; Wang, P. Sn3O4: A novel heterovalent-tin photocatalyst with hierarchical 3D nanostructures under visible light. RSC Adv. 2014, 4, 1266-1269.

14

Xia, W. W.; Wang, H. B.; Zeng, X. H.; Han, J.; Zhu, J.; Zhou, M.; Wu, S. D. High-efficiency photocatalytic activity of type Ⅱ SnO/Sn3O4 heterostructures via interfacial charge transfer. CrystEngComm 2014, 16, 6841-6847.

15

Berengue, O. M.; Simon, R. A.; Chiquito, A. J.; Dalmaschio, C. J.; Leite, E. R.; Guerreiro, H. A.; Guimarães, F. E. G. Semiconducting Sn3O4 nanobelts: Growth and electronic structure. J. Appl. Phys. 2010, 107, 033717.

16

Lawson, F. Tin oxide-Sn3O4. Nature 1967, 215, 955-956.

17

Wang, F. P.; Zhou, X. T.; Zhou, J. G.; Sham, T. K.; Ding, Z. F. Observation of single tin dioxide nanoribbons by confocal raman microspectroscopy. J. Phys. Chem. C 2007, 111, 18839-18843.

18

Seko, A.; Togo, A.; Oba, F.; Tanaka, I. Structure and stability of a homologous series of tin oxides. Phys. Rev. Lett. 2008, 100, 045702.

19

Mäki-Jaskari, M. A.; Rantala, T. T. Possible structures of nonstoichiometric tin oxide: The composition Sn2O3. Modell. Simul. Mater. Sci. Eng. 2004, 12, 33-41.

20

White, T. A.; Moreno, M. S.; Midgley, P. A. Structure determination of the intermediate tin oxide Sn3O4 by precession electron diffraction. Z. Kristallogr. 2010, 225, 56-66.

21

Gauzzi, F.; Verdini, B.; Maddalena, A.; Principi, G. X-ray diffraction and mössbauer analyses of SnO disproportionation products. Inorg. Chim. Acta 1985, 104, 1-7.

22

Moreno, M. S.; Mercader, R. C.; Bibiloni, A. G. Study of intermediate oxides in SnO thermal decomposition. J. Phys. : Condens. Mat. 1992, 4, 351-355.

23

Damaschio, C. J.; Berengue, O. M.; Stroppa, D. G.; Simon, R. A.; Ramirez, A. J.; Schreiner, W. H.; Chiquito, A. J.; Leite, E. R. Sn3O4 single crystal nanobelts grown by carbothermal reduction process. J. Cryst. Growth 2010, 312, 2881-2886.

24

Cahen, S.; David, N.; Fiorani, J. M.; Maître, A.; Vilasi, M. Thermodynamic modelling of the O-Sn system. Thermochimica Acta 2003, 403, 275-285.

25

Ohgi, H.; Maeda, T.; Hosono, E.; Fujihara, S.; Imai, H. Evolution of nanoscale SnO2 grains, flakes, and plates into versatile particles and films through crystal growth in aqueous solutions. Cryst. Growth Des. 2005, 5, 1079-1083.

26

Uchiyama, H.; Ohgi, H.; Imai, H. Selective preparation of SnO2 and SnO crystals with controlled morphologies in an aqueous solution system. Cryst. Growth Des. 2006, 6, 2186-2190.

27

Manikandan, M.; Tanbe, T.; Li, P.; Ueda, S.; Ramesh, G. V.; Kodiyath, R.; Wang, J. J.; Hara, T.; Dakshanamoorthy, A.; Ishihara, S. et al. Photocatalytic water splitting under visible light by mixed-valence Sn3O4. ACS Appl. Mater. Interfaces 2014, 6, 3790-3793.

28

Xu, W.; Li, M.; Chen, X. B.; Zhao, J. H.; Tan, R. Q.; Li, R.; Li, J.; Song, W. J. Synthesis of hierarchical Sn3O4 microflowers self-assembled by nanosheets. Mater. Lett. 2014, 120, 140-142.

29

Li, M.; Tan, R. Q.; Li, R.; Song, W. J.; Xu, W. Effects of pH on the microstructures and optical properties of Sn3O4 crystals prepared by hydrothermal method. Ceram. Int. 2014, 40, 11381-11385.

30

Davies, C. G.; Donaldson, J. D. The mössbauer effect in tin(Ⅱ) compounds, Part Ⅲ. The spectra of trihydroxostannates(Ⅱ) and of basic tin(Ⅱ) salts. J. Chem. Soc. A 1968, 946-948.

31

Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C. Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv. Mater. 2006, 18, 2807-2824.

32

Wu, J. M.; Hayakawa, S.; Tsuru, K.; Osaka, A. Porous titania films prepared from interactions of titanium with hydrogen peroxide solution. Scr. Mater. 2002, 46, 101-106.

33

Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquérol, J.; Siemieniewska, T. Physical and biophysical chemistry division commission on colloid and surface chemistry including catalysis. Pure Appl. Chem. 1985, 57, 603-619.

34

Ding, Y. H.; Zhang, P.; Long, Z. L.; Jiang, Y.; Xu, F.; Lei, J. G. Fabrication and photocatalytic property of TiO2 nanofibers. J. Sol-Gel Sci. Technol. 2008, 46, 176-179.

35

Bocarsly, A. B.; Bolts, J. M.; Cummins, P. G.; Wrighton, M. S. Photoelectrolysis of water at high current density: Use of ultraviolet laser excitation. Appl. Phys. Lett. 1977, 31, 568-570.

36

Sclafani, A.; Mozzanega, M. -N.; Pichat, P. Effect of silver deposits on the photocatalytic activity of titanium dioxide samples for the dehydrogenation or oxidation of 2-propanol. J. Photochem. Photobiol. A: Chem. 1991, 59, 181-189.

37

Doodeve, C. F.; Kitchener, J. A. The mechanism of photosensitisation by solids. Trans. Faraday Soc. 1938, 34, 902-908.

38

Fox, M. A.; Dulay, M. T. Heterogeneous photocatalysis. Chem. Rev. 1993, 93, 341-357.

39

Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced amphiphilic surface. Nature 1997, 388, 431-432.

40

Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199-1209.

41

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.

42

Hoigné, J.; Bader, H. The role of hydroxyl radical reactions in ozonation processes in aqueous solutions. Water Res. 1976, 10, 377-386.

Nano Research
Pages 3553-3561
Cite this article:
Song H, Son S-Y, Kim SK, et al. A facile synthesis of hierarchical Sn3O4 nanostructures in an acidic aqueous solution and their strong visible-light-driven photocatalytic activity. Nano Research, 2015, 8(11): 3553-3561. https://doi.org/10.1007/s12274-015-0855-2

756

Views

48

Crossref

N/A

Web of Science

48

Scopus

3

CSCD

Altmetrics

Received: 11 May 2015
Revised: 21 June 2015
Accepted: 06 July 2015
Published: 14 September 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return