AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nontoxic virus nanofibers improve the detection sensitivity for the anti-p53 antibody, a biomarker in cancer patients

Pengtao Pan1,§Yicun Wang1,§Ye Zhu2,§Xiang Gao1Zhigang Ju2Penghe Qiu2Li Wang1( )Chuanbin Mao2( )
Institute of Genetics and CytologySchool of Life SciencesNortheast Normal University5268 Renmin StreetChangchun130024China
Department of Chemistry and BiochemistryStephenson Life Sciences Research CenterUniversity of OklahomaNormanOklahoma73019USA

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The presence of anti-p53 antibody in serum is a biomarker for cancer. However, its high sensitivity detection is still an issue in cancer diagnosis. To tackle this challenge, we used fd phage, a human-safe bacteria-specific virus nanofiber that can be mass-produced by infecting host bacteria in an error-free manner, and genetically engineered it to display a peptide capable of recognizing and capturing anti-p53 antibody on its side wall. We employed the resultant phage nanofibers as a capture probe to develop a modified version of the enzyme-linked immunosorbent assay (ELISA) method, termed phage-ELISA. We compared it to the traditional ELISA method for the detection of anti-p53 antibody, p53-ELISA, which uses recombinant wild-type p53 protein to capture anti-p53 antibody. We applied phage-ELISA to detect anti-p53 antibody in an experimental group of 316 patients with various types of malignant tumors. We found that a detection rate of 17.7% (56 positive cases) was achieved by phage-ELISA, which was comparable to the detection rate of 20.6% for p53-ELISA (65 positive cases). However, when both phage and p53 were combined to form antibody-capturing probes for phage/p53-ELISA, a detection rate of 30.4% (96 positive cases) was achieved. Our work showed that owing to the combined capture of the anti-p53 antibody by both phage nanofibers and p53, the phage/p53-ELISA achieved the highest diagnostic accuracy and detection efficiency for the anti-p53 antibody in patients with various types of cancers. Our work suggests that a combination of nanofibers and antigens, both of which capture antibody, could lead to increased detection sensitivity, which is useful for applications in the life sciences, clinical medicine, and environmental sciences.

References

1

Hollstein, M.; Sidransky, D.; Vogelstein, B.; Harris, C. C. p53 mutations in human cancers. Science 1991, 253, 49-53.

2

Levine, A. J.; Momand, J.; Finlay, C. A. The p53 tumour suppressor gene. Nature 1991, 351, 453-456.

3

Soussi, T. p53 antibodies in the sera of patients with various types of cancer: A review. Cancer Res. 2000, 60, 1777-1788.

4

Lara, J. F.; Thor, A. D.; Dressler, L. G.; Broadwater, G.; Bleiweiss, I. J.; Edgerton, S.; Cowan, D.; Goldstein, L. J.; Martino, S.; Ingle, J. N. et al. p53 expression in node-positive breast cancer patients: Results from the cancer and leukemia group B 9344 trial. Clin. Cancer Res. 2011, 17, 5170-5178.

5

Lubin, R.; Zalcman, G.; Bouchet, L.; Trédanel, J.; Legros, Y.; Cazals, D.; Hirsch, A.; Soussi, T. Serum p53 antibodies as early markers of lung cancer. Nature Med. 1995, 1, 701-702.

6

Mao, C. B.; Liu, A. H.; Cao, B. R. Virus-based chemical and biological sensing. Angew. Chem., Int. Ed. 2009, 48, 6790-6810.

7

Singh, A.; Arutyunov, D.; Szymanski, C. M.; Evoy, S. Bacteriophage based probes for pathogen detection. Analyst 2012, 137, 3405-3421.

8

Abbineni, G.; Modali, S.; Safiejko-Mroczka, B.; Petrenko, V. A.; Mao, C. Evolutionary selection of new breast cancer cell-targeting peptides and phages with the cell-targeting peptides fully displayed on the major coat and their effects on actin dynamics during cell internalization. Mol. Pharm. 2010, 7, 1629-1642.

9

Marvin, D. A.; Hale, R. D.; Nave, C.; Helmer-Citterich, M. Molecular models and structural comparisons of native and mutant class I filamentous bacteriophages: Ff (fd, f1, M13), If1 and IKe. J. Mol. Biol. 1994, 235, 260-286.

10

Mao, C. B.; Solis, D. J.; Reiss, B. D.; Kottmann, S. T.; Sweeney, R. Y.; Hayhurst, A.; Georgiou, G.; Iverson, B.; Belcher, A. M. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 2004, 303, 213-217.

11

Smith G. P.; Petrenko, V. A. Phage display. Chem. Rev. 1997, 97, 391-410.

12

Scott, J. K.; Smith, G. P. Searching for peptide ligands with an epitope library. Science 1990, 249, 386-390.

13

Smith, G. P. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 1985, 228, 1315-1317.

14

Yu, D. H.; Li, J. H.; Wang, Y. C.; Xu, J. G.; Pan, P. T.; Wang, L. Serum anti-p53 antibody detection in carcinomas and the predictive values of serum p53 antibodies, carcino-embryonic antigen and carbohydrate antigen 12-5 in the neoadjuvant chemotherapy treatment for Ⅲ stage non-small cell lung cancer patients. Clin. Chim. Acta 2011, 412, 930-935.

15

Sauer, M.; Bretz, A. C.; Beinoraviciute-Kellner, R.; Beitzinger, M.; Burek, C.; Rosenwald, A.; Harms, G. S.; Stiewe, T. C-terminal diversity within the p53 family accounts for differences in DNA binding and transcriptional activity. Nucleic Acids Res. 2008, 36, 1900-1912.

16

Wang, F. K.; Cao, B. R.; Mao, C. B. Bacteriophage bundles with prealigned Ca2+ initiate the oriented nucleation and growth of hydroxylapatite. Chem. Mater. 2010, 22, 3630-3636.

17

Anderson, K. S.; Wong, J.; Vitonis, A.; Crum, C. P.; Sluss, P. M.; Labaer, J.; Cramer, D. p53 autoantibodies as potential detection and prognostic biomarkers in serous ovarian cancer. Cancer Epidemiol. Biomarkers. Prev. 2010, 19, 859-868.

18

McNeil, S. A.; Halperin, S. A.; Langley, J. M.; Smith, B.; Warren, A.; Sharratt, G. P.; Baxendale, D. M.; Reddish, M. A.; Hu, M. C.; Stroop, S. D. et al. Safety and immunogenicity of 26-valent group a streptococcus vaccine in healthy adult volunteers. Clin. Infect. Dis. 2005, 41, 1114-1122.

19

Chapman, C. J.; Murray, A.; McElveen, J. E.; Sahin, U.; Luxemburger, U.; Türeci, O.; Wiewrodt, R.; Barnes, A. C.; Robertson, J. F. Autoantibodies in lung cancer: Possibilities for early detection and subsequent cure. Thorax 2008, 63, 228-233.

20

Zhang, J. Y.; Casiano, C. A.; Peng, X. X.; Koziol, J. A.; Chan, E. K.; Tan, E. M. Enhancement of antibody detection in cancer using panel of recombinant tumor-associated antigens. Cancer Epidemiol. Biomarkers. Prev. 2003, 12, 136-143.

21

Zweig, M. H.; Campbell, G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin. Chem. 1993, 39, 561-577.

22

Metz, C. E. Basic principles of ROC analysis. Semin. Nucl. Med. 1978, 8, 283-298.

23

Griner, P. F.; Mayewski, R. J.; Mushlin, A. I.; Greenland, P. Selection and interpretation of diagnostic tests and procedures. Principles and applications. Ann. Intern. Med. 1981, 94, 557-592.

24

Lubin, R.; Schlichtholz, B.; Bengoufa, D.; Zalcman, G.; Trédaniel, J.; Hirsch, A.; Caron de Fromentel, C.; Preudhomme, C.; Fenaux, P.; Fournier, G. et al. Analysis of p53 antibodies in patients with various cancers define B-cell epitopes of human p53: Distribution on primary structure and exposure on protein surface. Cancer Res. 1993, 53, 5872-5876.

25

Schlichtholz, B.; Trédaniel, J.; Lubin, R.; Zalcman, G.; Hirsch, A.; Soussi, T. Analyses of p53 antibodies in sera of patients with lung carcinoma define immunodominant regions in the p53 protein. Brit. J. Cancer 1994, 69, 809-816.

26

di Marzo Veronese, F.; Willis, A. E.; Boyer-Thompson, C.; Appella, E.; Perham, R. N. Structural mimicry and enhanced immunogenicity of peptide epitopes displayed on filamentous bacteriophage: The V3 loop of HIV-1 gp120. J. Mol. Biol. 1994, 243, 167-172.

27

Vennegoor, C. J. M.; Nijman, H. W.; Drijfhout, J. W.; Vernie, L.; Verstraeten, R. A.; von Mensdorff-Pouilly, S.; Hilgers, J.; Verheijen, R. H. M.; Kast, W. M.; Melief, C. J. M. et al. Autoantibodies to p53 in ovarian cancer patients and healthy women: A comparison between whole p53 protein and 18-mer peptides for screening purposes. Cancer Lett. 1997, 116, 93-101.

28

Giovanni, M.; Setyawati, M. I.; Tay, C. Y.; Qian, H.; Kuan, W. S.; Leong, D. T. Electrochemical quantification of Escherichia coli with DNA nanostructure. Adv Funct. Mater. 2015, 25, 3840-3846.

29

Yuan, L.; Giovanni, M.; Xie, J. P.; Fan, C. H.; Leong, D. T. Ultrasensitive IgG quantification using DNA nano-pyramids. NPG Asia Mater. 2014, 6, e112.

30

Ralhan, R.; Arora, S.; Chattopadhyay, T. K.; Shukla, N. K.; Mathur, M. Circulating p53 antibodies, p53 gene mutational profile and product accumulation in esophageal squamous-cell carcinoma in India. Int. J. Cancer 2000, 85, 791-795.

31

Shimada, H.; Ochiai, T.; Nomura, F. Titration of serum p53 antibodies in 1085 patients with various types of malignant tumors: A multiinstitutional analysis by the Japan p53 antibody research group. Cancer 2003, 97, 682-689.

Nano Research
Pages 3562-3570
Cite this article:
Pan P, Wang Y, Zhu Y, et al. Nontoxic virus nanofibers improve the detection sensitivity for the anti-p53 antibody, a biomarker in cancer patients. Nano Research, 2015, 8(11): 3562-3570. https://doi.org/10.1007/s12274-015-0856-1

671

Views

20

Crossref

N/A

Web of Science

23

Scopus

2

CSCD

Altmetrics

Received: 17 April 2015
Revised: 03 July 2015
Accepted: 07 July 2015
Published: 15 September 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return